Suxbey of Fudia

THE TIDES

REVISED BY
Major C. M. THOMPSON, I. A. DEPUTY SUPERINTENDENT, SURVEX OF INDIA

This pamphlet forms part V of the Hand-book of Professional Instructions
(Third Edition) for the Geodetic Brauch,

PUBLISHED BY ORDER OF
 Colonel Commandant E. A. TANDY, R.E. SURVEYOR GENERAL OF INDIA

PRINTED AT THE GEODETIC BRANCH OFFIOR GURVEX OF INDIA, DEHRA DUN, 1926.

Price Two Rupees or Three Shillings \& Six Pence

Suxfrey of fndia

THE TIDES

REVISED BY
Major C. M. THOMPSON; I. A. DEPUTY SUPERINTENDENT, SURVEY OF INDIA.

This pamphlet forms part V of the Hand-book of Professional Instructions (Third Edition) for the Geodetic Branch.

PUBLISHED BY ORDER OF
Colonel Commandant E. A. TANDY, R.E. SURVEYOR GENERAL OF INDIA.

CONTENTS

CHAPTER 1.
 Theory and Computation

			Pages.
Theories, early and modern, and definition of certain			
terms used in tidal work	..	\ldots	1-14
General description of the Tides	14-18
Tidal constituents	...	\cdots	18-24
Bibliography	24-25
Harmonic Analysis of Tidal Observations	...	\ldots	25-60
Explanation of Auxiliary Tables ...	\ldots	...	61-67
Preparation of data for tidal prediction	...	\ldots	67-84
Sample computations on forms 1 \& 2 Tid. Pred. with explanations 85-92			
Prediction for Riverain Ports	...		93-107
Corrections and components used for Bassein	\cdots		108-109
Auxiliary Tables I-XXII		...	110-140

CHAPTER II.
Tidal Observations

CHAPTER III.
 The Tide-predicting Machine

General description of the Tide-predicting Machine			1-7
Notes regarding accessories required for the Tide-			
predicting Machine		...	7-9
Notes on Tide Machine and tide predicting		...	9-14

Chapter III.-The Tide-predicting Machine-(Continued) Pages.
Setting and running the machine 14-23
Abstract of procedure adopted in running the machine 24-25
Mensuring the diagram times and heights 26-29
Prediction by multiple contacts 29-36
INDEX
Alphabetical index $37-50$
List of ILLUSTRATIONS
CHAPTER II.
Newman's Pattern Tide-gauge Facing page 3 3CHAPTER III.
Robert's 'Tide-predicting Machine (back view) Facing page 3
Robert's 'Tide-predicting Machine (front and side view) 5
Diagram of components 12
Diagram to illustrate the grouping of pins and the perforations caused thereby 16
Diagram illustrating the attachment of the chronograph to the Tidal Machine 20
Part of chronograph chart for Bombay 1925 30
Diagram illustrating scale for heights 31
Diagram illustrating how contacts are arranged in the multiple contact system 34

PREFACE

THE tide predicting machine belonging to the Indian Government having been transferred from the National Physical Laboratory, Teddington to the Trigonometrical Survey Headquarters at Dehra Dun in 1921, this revision of the Tidal Chapter of the Handbook of professional instructions for the Trigonometrical Branch, Survey of India, has been taken up with a view to provide a manual which may assist an observer who may have to undertake the general duties connected with the tidal party, as well as the Harmonic Analysis and prediction of tides in accordance with the methods at present in use in the department.

In a preliminary report presented at the Geophysical Discussion, vide the British Association report 1918, it was stated that the tide tables, as at present produced, appear to be adequate for practical needs. This was based on the facts that the practically important constituents can be determined fairly accurately, and that Harmonic prediction presents no theoretical difficulties like those of Harmonic Analysis. The investigations of Dr. A. T. Doodson of the Liverpool Tidal Institute show, however, that the published tables of Harmonic predictions are also very unsatisfactory.
(1). About half the error in short period tides he attributes to the inadequate treatment of shallow water effects.
(2). The remaining half is due to tidal constituents, not included in Darwin's schedules of 1883, and whose origin is not definitely known.
(3). Time devoted to modification of Harmonic constants by repeated analyses would be better spent in analysing for new constituents.

The British Association report for 1920 states "that the principle of Harmonic analysis is part of the theory of the small oscillations of a dynamical system, and its application becomes less accurate as the range of a tide becomes a larger fraction of the depth of the water, or as the tidal currents become greater. It yet remains to be found to what precise extent the purely astronomical tide at any station may be expressed as a series of a reasonable number of Harmonic constituents. When this has been done, and the methods of analysis and prediction refined, so as to give predictions correct to this extent, a hopeful investigation may be made into the residual astronomical tide and the whole of the meteorological disturbance."

Modern investigations are thus more especially directed towards improving the predictions for Riverain ports and estuaries, having shallow foreshores, where at present the results are more liable to error, and to the study of meteorological effects. It is likely therefore that changes and improvements in the present methods may be introduced in the course of time.

My acknowledgments are due to Dr. J. de Graaff Hunter, M. A., Sc.D., F. Inst. P., more especially for his explanations regarding the application of corrections to Riverain port predictions and the multiple contact method of running the Tidal machine; and to Capt. E. A. Glennie, D.S.O., R.E. for his preliminary notes on the erection and running of the same. I also take this opportunity of thanking Mr. D. H. Luxa, the tidal assistant, for helping throughout with the preparation and proof reading of the book Mr. R. B. Mathur, B.A. for the preparation of diagrams and correction of the tables; Computer M. Chattersi of the Computing Office, for assisting in the compilation of the portion relating to Riverain predictions as well as in proof reading; and Mr. Shyam Narayan, B. Sc., Asstt. Supervisor of the Printing Office, Dehra Dūn, for his general superintendence of the printing.

[^0]
Surfey of frota

THE TIDES

CHAPTER I

Theory and Computation

1. From early times the rise and fall of the level of the ocean twice, or nearly so in the 24 hours was attributed to the influence of the moon and the sun, but this phenomenon was not satisfactorily accounted for till Newton in 1687 expounded his theory of gravitation which explained the cause of the tide-generating forces.

The ticle-generating force of a satellite at any point tends to accelerate a body relatively to the earth as if acted on by a force depending on the difference in magnitude and direction between the moon's attraction at that point and at the earth's centre.

The tide-generating force varies directly as the mass of the tidegenerating body and inversely as the cube of the distance. Hence the sun, though $25 \frac{1}{2}$ million times larger than the moon is 389 times as distant and therefore produces a tide-generating force less than one half of the moon's. In order to explain the tidal phenomena two general elementary theories were evolved, and though neither is actually adequate to explain the actual tides, they are important as forming the basis of investigation.
'These theories are known as the equilibrium and canal theories.
2. The equilibrinm theory.-The figure of equilibrium of the ocean under the tide-generating force of the moon, supposing that it were at each moment allowed to assume that position of rest which it would attain if infinite time were allowed, is a prolate ellipsoid of revolution with the major axis directed to the moon. The same applies to the sun. When the tide-generating forces of both are superimposed, we would find, under this theory, that spring or high tides would occur at syzygies (conjunction and opposition) and neap or low tides at quadratures (moon's quarters). From syzygy to quadrature the tide would be found to 'prime' or occur earlier than under the moon's influence alone. From quadrature to syzygy the tide would be found to ' lag' or occur later than under the moon's influence alone.

The uncorrected equilibrium theory is useful as a working hypothesis in tidal work, as it enables us to infer suitable forms of expression for the tidal disturbances, knowing the law of the forces to which they are due.
3. The corrected equilibrium theory differs from the former in assuming the earth not wholly covered by water and so the surface even of a deep sea cannot actually coincide with the spheroid of the uncorrected theory, but will be parallel to it, the distance therefrom, at any given point, varying with time. It applies roughly to small deep bodies of water.
4. The canal theory.-If the earth's rotation is taken into account and the moon's tide-generating force is conceived as creating waves in a shallow equatorial canal under 13 miles deep, the moon would outstrip the waves generated, and the latter would, if allowed to settle into steady oscillation, cause low water directly under the moon and at a point opposite to it, or an inversion of the tides that would be expected from the equilibrium theory.

The consideration of the motion of a free wave in non-equatorial canals parallel to the equator led to the conclusion that, whilst the tides of a shallow ocean are inverted at the equator and direct towards the pole, in a canal somewhere between higher latitudes and the equator, there would theoretically be quasi-infinite tides with an enormous range of rise and fall.
5. The above theories did not suffice to solve the problem, which was of great complexity. The orbits of the earth and moon are not circular, nor do they lie in the same plane as the equator. Thus the positions of the sun and moon relatively to the earth are continually varying in distance, declination and right ascension. Consequently the level of the ocean is subject to momentary variations in the dynamical actions of the disturbing bodies and these cause a variety of tides, which recur periodically, some in long and others in short periods.

After Newton the early workers on tidal theory were Bernoulli, Maclaurin, Euler and Cavalleri, who all contributed essays to the Académie des Sciences at Paris in 1738, but little advance in tidal theory was made till Laplace took up the question about the year 1774.
6. The very difficult mathematical problem of the tide covering the

Problem of the tide covering the glabe to Ω uniform extent. globe to a uniform extent was first successfully attacked by Laplace. He showed that, whilst the tides of a shallow ocean are inverted at the equator, they are direct towards the poles, but that the other indication of the canal theory regarding quasi-infinite tides was wrong. He found instead that theoretically the tidal variation of level vanishes in some latitude between the equator and pole. At this circle the water

Char. I.]
Theory and Compditation
flows north and south and to and fro between east and west, but never to raise or depress the level of the sea. It is not true to say that there is no tide at this circle of "evanescent" tide, for there are tidal currents without rise or fall. When the ocean was considered as divided into parallel canals, the north and south currents which prevent the tides becoming very great as indicated by the canal theory, were thereby obliterated. (This problem has since been more fully investigated by later mathematicians, notably Mr. S. S. Hough in 1897-98, vide the article "Tides" in the Encyclopædia Britannica, Eleventh Edition).
7. Laplace also treated the problem of the tides by assuming a

Laplace's method of fictitious satellites and periodic law.
number of fictitious satellites of various masses, moving in circular orbits with uniform motion, so arranged that the sum of their tidal forces was exactly the same as that due to the real sun and moon in their proper orbits. Among these satellites were the mean sun and moon, and others which correct the motions of the mean sun and moon for declination, parallax and other inequalities in their motions.

He moreover enunciated the most important principle that the state of oscillation of a system of bodies in which the primitive conditions of movement have disappeared through friction is co-periodic with the forces acting on the system.

He thus was able to resolve the tidal forces by considering them as having simple circular motion of periods dependent on the fictitious satellites above-mentioned and to discuss the tides at any port by a combination of theory and observation.

The foundations of Harmonic Analysis were laid by Laplace, for he enunciated the principle of forced oscillations; he introduced tidal bodies having uniform motions; he showed how to develope the tide-producing potential in a series of periodic terms and pointed out the more important harmonic constituents of the astronomical tide; he developed the method of least squares sufficiently to make it applicable to the determination of the coefficients of a sine and cosine function of an angle and its harmonics. But he did not attempt an analysis of equidistant ordinates based upon this knowledge, nor did he completely develope the tide-producing potential.

The theory now adopted regarding tides is substantially the same, but presented in an entirely different manner, the fictitious satellites being discarded, and the results being developed directly.

The connection between the method of Laplace and the modern method of development may be traced by remembering that the proper

Chap. I.]
The Tides
motion of each one of Laplace's fictitious satellites is at once derivable from the argument or angle under the sign of cosine which is associated with the partial tide in the later discussion, and Lord Kelvin considered it helpful to retain this connecting link between the earlier and modern theories. The method of Laplace also serves to explain and illustrate certain points connected with the nomenclature of terms used at present.

Subsequent to Laplace and up to about the year 1866 the principal investigators of tidal theory were Sir J. Lubbock senior, Whewell and Airy.
8. Up to this point the methods of comparison of tidal theory and tidal observation had been synthetic, i.e. they had merely considered the tidal wave as a whole, moreover the methods had consisted of merely averaging the times and heights of high and low-waters in selected sets or groups, without paying attention to the heights and times recorded at times other than those of high or low water.
9. In 1866 Sir William Thomson (afterwards Lord Kelvin) took up the investigation. Tidal theory was still very far from representing the actual state of the tides. Observations showed in fact that the irregular distribution of land and water and the varying depths of the ocean in various places combined with meteorological conditions produced irregularities in the oscillation of the sea of such complexity that the rigorous solution of the problem by synthetic methods seemed unlikely. This state of affairs led Sir William Thomson to abandon the attempt at mathematical synthesis, and to resolve the complex whole into a number of separate parts, by means of the method of Harmonic Analysis.

The methods evolved were afterwards perfected by the investigations of Mr. E. Roberts, F. R. A. S. and Prof. G. H. Darwin.

In 1882, 1883 and 1885 Prof. G. H. Darwin, (afterwards Sir George Darwin) presented reports at the British Association meetings which have ever since formed the standard manual on the subject. The methods evolved by Darwin are known as the British Association methods and are those in use in the Survey of India at the present day.* They are dependent on a spherical Harmonic Analysis of the tide-generating potential, whereby the theory was developed to a higher degree of accuracy than had been previously attained. Details of the method of development are given in G. T. Survey Volume XVI.

[^1]
Theory and Computation

10. A brief account of the method is given here.

If we expand the potential in such a manner as to obtain the complete expression for a tide in terms of a series of simple harmonic functions of the time, the principle of forced oscillations allows us to conclude that the oscillations of the sea will be of the same periods and types as the several terms of the potential, but with amplitudes and phases, which can only be deduced by observation.

The portion of the tide following any period strictly, can be analysed by Fourier's theorem into one or more simple cosine terms whose angles or arguments, (which are proportional to time), go through 360° and multiples thereof, in the given periodic time. Either the process or the result is spoken of as a Harmonic Analysis.

The height of the water at any place may be expressed as the sum of a certain number of simple harmonic functions of the time of which the periods are known, being the periods of certain constituents of the sun's and moon's motions. Any such harmonic term is called a tidal component or tide. The expression for it in ordinary analytical notation is $A \cos n t+$ $B \sin n t$, or $R \cos (n t-\zeta)$, if $A=R \cos \zeta$ and $B=R \sin \zeta$ where t denotes time measured in any unit from any era, n the corresponding angular velocity (a quantity such that $\frac{2 \pi}{n}$ is the period of the function), R and ζ the amplitude and epoch respectively, and A and B, coefficients, immediately determined from observation by Harmonic Analysis, which consists virtually in the method of least squares, applied to deduce the most probable values of these coefficients from the observations.

The oscillations of the sea will not however necessarily be of the simple harmonic form, and accordingly overtides of double and triple frequency will have to be introduced in order to represent the motion according to Fourier's method (compare para 37). Such overtides occur particularly in rivers and estuaries where the water is shallow and the waves become distorted. Compound tides also occur, which are explained in para 38.

The method of Harmonic Analysis thus considers each tide as a simple harmonic oscillation and each tide is designated by a separate initial letter or combination of letters selected more or less arbitrarily as explained in para 39 et seq.
11. Simple Harmonic motion.-When a point Q moves uniformly in a circle, the perpendicular QP drawn from its position at any instant to a fixed diameter $A A^{\prime}$ of the circle, intersects the diameter in a point P,

Chap. I.]
The Tides
whose position changes by a simple harmonic motion. The amplitude or semi-range of the motion is OA or OA^{\prime} in the figure.

Now each partial component tide may similarly be represented by a circle of known diameter; and if we suppose a point to move uniformly right round the circumference of this circle, so as to make a complete revolution in the time which is this tide's period, then the height of a point above or below the horizontal diameter BB^{\prime} of the circle at any moment, represents the height of the partial tide at that moment.

The velocity of rotation of a tide rests primarily on certain con-siderations-combinations of the angular velocities of the earth's rotation round its axis, the moon's rotation round the earth, the earth's round the sun, and the progression of the moon's perigee, which are decided a priori from theoretical considerations.

These preliminary angular velocities correspond to the arguments of the fictitious stars of Laplace's method.

12 The uniform hourly change in the angle of any component is called its speed, the value of its angle reckoned

Speed. phase, amplitude, aṇd epoch. from its high water at any instant is called its phase, its constant semi-range is called its amplitude, and the epoch or lag is the angle in degrees, which the arm OQ (vide figure) revolving uniformly in the period of the particular tide has to run through till high water of this constituent from a certain instant or era of reckoning, dependent in the case of each particular tide on the astronomical cause to which it is attributable.

Otherwise expressed, the epoch may be defined as the constant angular retard of the maximum of any component behind its astronomical cause or fictitious satellite's transit, as assigned under Laplace's thethod.

Thus if n denote the periodic speed of a tide and ζ its epoch, its time of high water is $\frac{\zeta}{n}$ hours after the transit of the fictitious satellite.

The epoch thus enables us to ascertain the point which the tide has reached at any given moment during its movement over the circumference of the circle.
13. The amplitude and epoch form a pair of tidal constants

Tidal constants. referring to the particular place where the observations were made.
14. As the component tides into which the tidal wave is resolved by

Composition of simple harmonic motions. example of the composition of simple harmonic motions in one line.

Thus the momentarily varying level of the surface of the ocean is supposed to be the resultant of a large number of tides, each of which is perfectly independent of all the others, and has its own amplitude and period of revolution, which remain constant throughout all time. Occasionally several of the most important tides are in conjunction, and then the range between high and low water is a maximum, as at spring tides; at others, some tides are in opposition to others, and then the tidal range is a minimum, as occurs at neap tides.

If therefore we are able to find by means of continuous observations of the varying level of the sea, through obliterating the effects of extraneous tides, the amplitude and epoch of each of the several tides, of which the height of the sea level is the resultant, and also know the velocities of rotation of these constituent tides, we are in a position to be able to compute and predict the height of the sea level, at any future moment, at the station where the observations were taken, on which our calculations are based.
15. We may exhibit graphically any case of single simple

> Harmonic curves. or. compound simple harmonic motion in one line by curves, in which the abscissæ represent the intervals of time and the ordinates the corresponding distances of the moving point from its mean position. In the case of a single simple harmonic motion, the corresponding curve would be that described by the point P in the figure on page 6 , if, while \mathbf{Q} maintained its uniform circular motion, the circle were to move with uniform velocity in any direction perpendicular to OA. The curve in this case would be the simple harmonic curve of sines (or cosines).

Chap. I.]
The Tides

At places where the semidiurnal component tides are much larger than the diurnal, quarter diurnals etc., the tidal curve will be found to approximate towards a sine (or cosine) curve whose period is about 12 lunar hours.

The actual tidal curves are usually more complex, particularly in the tropics where the inequality in the diurnal tide is large, and also its range.
16. The harmonic analysis of tidal observations consists in Prediction. the dissection of the aggregate tidal wave into a number of partial constituent waves of which the amplitude and epoch are determined, and prediction involves the recomposition or synthesis of these waves. In the synthetic process, the partial waves have to be recompounded in their proper relative positions which are determined by the positions of the moon and sun at the time chosen for the commencement of the prediction. This can be effected by a laborious process of mathematical computation, uniting each group of tides (e.g. diurnal, semidiurnal etc.,) into single waves and finally into a resultant wave. The task of forming a general tide table by these means consists in the determination of all the possible periods and heights of the resultant wave and the tabulation of the heights and intervals after the moon's passage of its high and low water.
17. The synthesis is however more easily carried out by means of Tide-predicting the tide-predicting machine, which was invented machine. by Lord Kelvin in 1872, and constructed under the supervision and design of Mr. E. Roberts, F.R.A.S. by Messrs. Légé and Co. of Paris.

This machine effects the composition of simple harmonic motions in oue line and traces the tidal curves on a diagram. By measurements of the abscisser and ordinates from the latter the times and heights of the tides at any time can be read.

A fuller description of this machine and the method of its employment are given in Chapter II.
18. A tide may be defined as the daily rising and falling of the Explanations of cer- waters of the ocean. tain terms used in tidal work.

An astronomical tide is a tide due to the attractions of the sun and moon.

A meteorological tide may be defined as the regular alternation of sea level due to the wind, changes of atmospheric pressure, and other meteorological causes, e.g. land and sea breezes by day and night, the melting of snows, and annual variability in rainfall and evaporation which produce such apparently periodic changes of level in river estuaries, that they partake of the tidal character. These causes give rise to daily, semi-annual and annual meteorological tides.
19. The terms "ebb and flow" in tidal rivers are not synonymons with "rise and fall" for at the moment of high water the current is most rapid up stream and at low water most rapid down stream. Hence the tidal current "flows" long after high water has passed and "ebbs" for a long time after low water and when the water level is rising. As a consequence the tide in rivers rises quicker than it falls, and a shorter time elapses between low and high water than between high and low water.

When an estuary contracts considerably, the range of a tide becomes greatly magnified as it narrows. The augmentation of the height is due to the concentration of the energy of the motion of a large mass of water into a narrow space.
20. Bore or Eagre.-The heading back of the sea water by the natural current of the river, and the progressive change of the shape of a wave in shallow water, which gradually steepens in front, while its rear slope becomes more gradual, is supposed to cause the phenomenon known as a bore or eagre, in which the tide rises with such rapidity that the wave assumes the form of a wall of water and advances in this form. The following Indian rivers have bores :-the Ganges, the Hooghly, Brahmaputra and Indus.

The phenomenon also occurs in rivers in other countries, as well as in narrow arms of the sea, e.g. the Amazon, Tsientang, Garonne, Dordogne, Seine, Trent, Severn, Wye rivers and the Solway Frith, arms and bays of the Bay of Fundy.
21. Seiches are short-period oscillations, (usually from about 10 to 60 minutes), existing at times in lakes or land-locked bays. They represent oscillations in which usually the whole body of the liquid swings to and fro. They are caused by sudden changes in atmospheric pressure, or winds which sweep over its surface, etc. The period of such a seiche is

$$
\frac{\text { twice length of lake }}{\sqrt{g h}}
$$

where g denotes the acceleration of gravity, and h, the depth of the lake
or bay. Seiches may not always be uni-nodal as supposed above, nor does the nodal line always run transversely to the body of water.

An account of seiches is given in Darwin's Tides. The phenomenon has been observed on lakes such as Lake Constance and Lake Geneva etc., and on bays in India, compare p. 337 of the U. S. Coast and Geodetic Survey Report for 1897. Such a seiche with a period of about 15 minutes exists in Madras harbour.
22. Establishment of a port.-For a very rough determination of the time of high water, it is sufficient to add the solar time of high water on the days of full and change of moon, called the "vulgar establishment of the port " to the time of the moon's passage over the meridian, either visibly above or invisibly below the horizon.
23. Corrected Establishment of a port.-Spring tide occurs from 1 to 3 days after the full and change of moon. It is more important to know what occurs at spring tide than at new and full moon, so that the term "corrected establishment of a port" is used to denote the interval elapsing at a spring tide between the moon's transit and high water. The difference between the ordinary and corrected establishments is of small amount.

24 Spring rise, Neap range, Neap rise.-The average height at spring tide between high and low water marks is called the 'spring rise'. That at neap tides however is called 'the neap range'. The term ' neap rise' is used to mean the average height between high water of neap tides and the low water of spring tides. The term " rise" thus refers to the rise above level of low water at spring tides, both in the cases of spring and neap tides.
25. Age of the tide.-The average interval elapsing between the full or change of moon and spring tide is called " the age of the tide," as it represents the age or interval which the tide is assumed to take to reach a place after the moon's meridian passage at full or change of moon.
26. The mean establishment of a port.-The mean establishment comprising the mean of all the luni-tidal intervals is that generally utilised, as its value is not dependent on the age of the tide, as is the value of the vulgar establishment, and the corrections to the mean value on account of age are not variable in the same manner as those which have to be applied to the vulgar establishment. The mean establishment can be computed by taking the mean of the luni-tidal intervals for a whole lunation i.e. from one new moon to the next one succeeding it. The computation is carried out as follows :-

Select a whole month's tidal registerations preferably in mid-year. Find out from the Nautical Almanac the date and time of the new moon for the particular month selected. This is given in astronomical time each day commencing and ending at noon*. The tidal registrations are generally in civil time, each day commencing and ending at midnight. Convert astronomical to civil time for the values of the transits and make out a table as fallows:-

Date	Time of ligh water in local mean time.	Time of moon's transit at Greenwich in Greenwich mean time.	Luni-tidal interval.

It should be noted that the time of high water will always be after that of the moon's transit and hence the former will be the greater.

The mean of all the luni-tidal intervals is then taken out.
This mean is referred to the time of moon's transit at Greenwich. It is now necessary to correct this so as to refer to the local time of transit over the meridian of the place. Now the moon moves away from the sun, so that its distance increases by about 48 minutes in 24 hours so that roughly a correction of about minus 2 minutes is necessary for every hour of longitude east of Greenwich.

This correction having been applied, the resulting value is the mean establishment of the port.

Values of the mean establishment of each port are published in the tide tables derived from several sets of results, computed as above explained.
27. In the case of predictions for Riverain ports, it has been

> Predictions for Riverain ports. found better to refer the tides not to the moon's transits immediately preceding, but to transits varying from 21 to 40 hours previously. Monthly mean values of the intervals are thus obtained between moon's transit and high and low water, ard charts of these are plotted corresponding to each hour. The values corresponding to the transits read from these charts undergo further corrections for declination, parallax, as well as for readings taken from a curve representing the diurnal tide.

In this method the tides are referred to transits of the moon at Greenwich in order to simplify the computations, and to obviate the necessity of finding the local times of transit.

[^2]Chap. I.]
The Tides

The method of Riverain prediction is fully explained in Chapter I para 109 et seq.
28. Diurnal Inequality.-Although this term .may be applied to the times and heights of high water, yet its application has more immediate reference to the height, as the rise and fall in feet is the important question to the pilot.

The reason for the diurnal inequality is best explained by means of a diagram.

Taking the equilibrium theory as a working hypothesis, the lunar tide must be highest when the moon is nearest the zenith or nadir, \mathbf{Z} and N in the diagram. Hence high tide takes place at the moon's upper or lower transits, when its zenith and nadir distance are least.

But for a place in north latitude, when the moon's declination is north, it describes a small circle $Q^{\prime} R^{\prime}$, and its least zenith distance $\mathbf{Z Q}^{\prime}$ is less than its least nadir distance NR^{\prime}. Hence there is a difference of height between alternate superior and inferior high waters, the superior high water meaning that which occurs when the moon is above the horizon, and the inferior when it is below. Thus the diurnal inequality vanishes, when the moon is on the equator EE^{\prime} and is at its maximum, when the declination is greatest. But there is a more marked diurnal inequality in alternate low waters, and, as the difference amounts sometimes to nearly one-half of the extreme range of the spring tides in the tropics, the importance of having tide-tables which recognise these inequalities of both high and low waters cannot be exaggerated.
29. Datum of soundings or Plane of reference.-In England the diurnal inequality is so small as to be relatively unimportant, and in 1878 in the Admiralty tide-tables, times were only predicted for the time and mean height of the high waters, while the zero of the tables was given as the mean height of the low water of ordinary spring tides.

The observations at Karachi made it obvious that the Admiralty method was insufficient for our inter-tropical tide, as it ignored the diurnal inequality, and a datum of reference, based on means of low waters, which varied by as much as 5 to X feet would not be satisfactary, as many low waters would fall below the zero and become negative.

The British Admiralty refer their soundings and tide-tables, as already stated, to the mean low water mark of ordinary spring tides.

In India however, on account of the diurnal inequality, the datum of reference was taken as below the mean sea-level by the sum of the semi-ranges of the tides M_{2}, S_{2}, K_{1}, and O_{1} (vide para 42). This datum is called the Indian "spring low-water mark." This differs from the Admiralty datum of soundings which we have to adopt in our tide-tables in order to agree with their charts.

As, in spite of the adoption of the above datum, we still continue to obtain negative results for low water heights, it has been suggested for consideration by the Hydrographer to the Admiralty, London S.W. that we should adopt a still lower datum of reference viz:-a datum obtained by deducting from mean sea-level the sum of the semi-ranges of the tides $\mathrm{M}_{2}, \mathrm{~S}_{2}, \mathrm{~K}_{1}, \mathrm{O}_{1}$ and also Sa .
30. The results obtained from tidal observations are both of scientific and practical utility. Though we have little to

The objects of tidal research. do with the scientific side of the subject at present, it may not be out of place to mention that a better knowledge of the laws of the tides is expected to lead to an evaluation of the mass of the moon, to more definite information regarding the rigidity of the earth, to an approximation of the depth of the sea from the observed velocities of tidal waves, and to information regarding the retardation of the earth's velocity due to tidal friction, etc.
31. Tidal friction.-In the evolution of worlds, tidal action has had a very important influence. It has long been recognised that, in the case of the earth, the tidal wave must act as a kind of friction brake, gradually retarding the rate of rotation. But any such change in the rate of rotation of the primary body must be accompanied by changes in the distance and time of revolution of the moon. Calculating backwards Prof. (I. H. Darwin has found that originally the moon must have been nearer the earth. Previous to its existence as a separate satellite it was part and parcel of the earth and its origin as a satellite is believed to have been due to the tidal action of the sun acting upon a fluid or semi-fluid body, whose period of rotation was nearly equal to

Char. 1.]
Thef Tides
its natural period of oscillation. Thus the properly timed impulses acted so as to produce large tidal distortions, which finally resulted in the separation of the body into two parts. The tidal action of the earth has long ago compelled the latter to rotate upon its axis in exactly the same time as it revolves in its orbit. There can be little doubt that before the moon had cooled down to its present unchangeable condition, very large tides must have been generated in it, and these would act as friction brakes, so long as the period of the moon's axial rotation was shorter than its time of orbital revolution. There is evidence of Jupiter's satellites having the same peculiarity, and it is now believed that Venus and Mercury have their day equal to their year. This would be attributable to the fact that the greater proximity of the sun to the two inferior planets would produce correspondingly larger tides with a correspondingly quicker reduction of the axial to the orbital period. Similar to the tides, as they exist in the fluid portion of the earth, there are tidal stresses in the solid crust, and it has been considered that they may possibly be a factor in the production of earthquakes. Prof. G. H. Darwin has considered the question as to whether there is any evidence of a slight yielding of the crust under the influence of tidal stresses. He finds evidence of a slight yielding showing that the earth has an effective rigidity about equal to steel.

General description of the Tides.
32. As already explained in para 28 , there are diurnal inequalities in the tides owing to the varying declination of the sun and moon. These phenomena can be represented by supposing a diurnal tide high only once in a lunar day of $24^{\mathrm{h}} 50^{\mathrm{mm}}$ combined with a semidiurnal tide high twice in this period ; also a diurnal tide high once in a solar day of $24^{\text {h }}$ combined with a semi-diurnal tide high twice in this period.

The moon's declination goes through a complete cycle of changes in a lunar month. Thus for half a month the moon's declination will be north and for half a month south of the equator, and, at corresponding periods, will have the same value but be of opposite sign. Hence it will describe diurnal circles equidistant from the equator at intervals of a fortnight, and the tides so formed have the same heights. This can be represented by supposing a fortnightly tide of the proper height combined with the diurnal and semi-diurnal ones. In just the same way the smaller tides, caused by the sun, can be artificially represented by combining a diurnal and semi-diurnal tide, (the solar day being used), and a semi-annual tide.

It may likewise be shown that according as the moon is in apogee or perigee, there will be a lesser or greater heaping up of water round the equator and sinking at the poles, and so there would be a monthly tide from this cause called the lunar monthly elliptic, and for similar reasons there would be an annual solar tide caused by parallax, as the earth was nearer or further from the sun.

There are also meteorological tides, as already explained in para 18, of daily, semi-annual or annual periods.
33. Hence the chief tidal constituents in most localities are :-

1. Lunar and solar semi-diurnal tides.
2. Lunar and solar diurnal tides.
3. Lunar fortnightly and solar semi-annual tides.
4. Lunar monthly and solar annual tides.
5. Short period tides.-Of these all tides which recur in periods of or about a day in duration or any aliquot part of the quasi-diurnal period are classified as short period tides.

Long period tides.-The remainder of periods of a fortnight, a month, 6 months, a year, etc. are class.fied as long period tides. One exceptional tide, the 19 -yearly is due to the rotation of the moon's nodes in 18.6 years vide end of para 41 .

It has been reasoned also that there should be a very minute tide due to forced nutation and precession of a probable period of about 430 days, the effects of which may be detectable by careful observation (vide Darwin's Tides page 231, and Christie's "Latitude variation tide').
35. As certain terms concerning the relative movements of the

Inequalities :u the relative motion of the sun, moon and earth. moon, the sun and the earth enter into tidal work and theory, the following explanation of these terms is here given.

The moon's distance from the earth is not the same in different parts of its orbit. The form of its orbit is an ellipse with the earth in one of the foci. This ellipse is however continually distorted by various inequalities, chiefly due to the sun's attractive energy contending with that of the earth for mastery over its satellite.

The lunar orbit is inclined at to the earth's orbit or ecliptic at an angle of $5^{\circ} 8^{\prime} 40^{\prime \prime}$. The points where the two orbits intersect are called the nodes, and the line joining them the line of nodes. The point of the lunar orbit nearest the earth is the perigee and that most distant the apogee, and the line joining them the line of apsides.

Both the line of nodes and the line of apsides change their places, the former turning completely round in $18 \cdot 6$ years, the latter in nearly 9 years. These motions which are due to the sun's disturbing influence take place in opposite directions, the line of apsides revolving with the orbital motion, the line of nodes against it. Thus the form of the moon's orbit, and the varying nature of the forces governing it, as well as the perturbing influence of the sun cause variations in the moon's velocity. These are allowed for usually, by taking as a foundation the mean or arerage angular velocity, and considering its variations under the title of inequalities.
36. The tides which arise from these inequalities are classified as elliptic, declinational, variational or evectional.

Elliptic declinational, variaitional and evectional tides.

The term elliptic is applied to those tides which depend on the quicker or slower motion in different parts of their elliptic orbits of the sun, moon and earth, and the consequent increase or decrease of the disturbing forces as the bodies approach or recede from each other (i.e. the parallax).

The term declinational is applied to those tides which are caused by the changing declinations of the disturbing bodies.

The term variational is applied to those tides caused by the moon's variation, which is an inequality in the moon's motion arising from changes in direction and amount of the sun's disturbing force upon it, as it moves in its own orbit.

The term evectional is applied to those tides which arise from the moon's evection, an inequality in its motion depending on the position of the axis of the moon's orbit and the line of nodes with regard to the sun, the effects of which are complicated.

The diurnal and semi-diurnal tides have inequalities caused by parallax, and therefore there are elliptic diurnal and semi-diurnal tides. The solar annual is also an elliptic tide. The semi-diurnal tides also have inequalities depending on the varying declinations of the sun and moon, and there are therefore declinational semi-diurnal tides. The lunar semi-diurnal tide also has inequalities depending on the evection and variation perturbations of the moon, and there are therefore lunar evectional and variational semi-diurnal tides.
37. Out in the ocean the principal lunar semi-diurnal tide

[^3] is a simple wave, but when it runs into shallow water at the coast line, and still more so
in an estuary, it changes its shape. The low water lasts longer than high water in rivers, as already mentioned in para 19 , and the time which elapses from low to high water is generally shorter than that from high to low water. The wave is no longer simple, and this has to be considered as consisting of the fundamental lunar semi-diurnal wave with a period of 12 his. 50 mins., of the first overtide or octave with a period of 6 hrs .25 mins ., and of the second overtide or twelfth with a period of 4 hrs. 17 mins., and of the third overtide or double octave with a period of 3 hrs .13 mins., etc.

Hence in shallow water, as hereafter explained in para 43, we find the component tides $\mathrm{M}_{2}, \mathrm{~S}_{2}, \mathrm{~N}_{2}$; etc. accompanied by the overtides M_{4}, $\mathrm{S}_{4}, \mathrm{~N}_{4} ; \mathrm{M}_{6}, \mathrm{~S}_{6}, \mathrm{~N}_{6}$; etc.

The analogy with musical notes is here complete, for a musical note of any quality is built up of a fundamental, together with its octave and twelfth, which are called overtones. So also the distorted tidal wave in a river is regarded as consisting of a simple fundamental tide with overtides of one-half and one-third the length and period of the fundamental wave.

In estuaries the first overtide of the lunar semidiurnal tide is often of great importance and even the second is considerable, the third is usually small and the fourth and higher overtides imperceptible. In the same way overtides must be introduced to represent the change of form of the principal solar semi-diurnal tide, but it is not usually found necessary to consider them in the case of the less important partial tides. 'The octave and the twelfth may legitimately be classed as due to the attractions of the sun and the moon, although arising indirectly from the distortion ceqused by the shallowness of the water.
38. In shallow water there may be sensible compound tides, viz:Compound Tides. the lunar and solar tides will give rise to tides having for their arguments the sum and difference of the arguments, or multiples of the arguments of the original tides. For instance as explained hereafter in para 41 the original tides $2 \gamma-2 \sigma$ or M and $2 \gamma-2 \eta$ or S, the sum of which gives $4 \gamma-2 \sigma-2 \eta$, a quarter-diurnal tide, and the difference $2 \sigma-2 \eta$ a synodic * fortnightly tide. There appears also to be a shallow water semi-diurnal tide of sensible magnitude, whose argument is,

$$
4(\gamma-\sigma)-2(\gamma-\eta) \text { or } 2 \gamma-4 \sigma+2 \eta
$$

[^4]Char. I.]
The 'Pides
but thris is also the argument of the variation tide, and this will account for any perturbations in the value of that tide (vide table in para 42).

These compound tides are sometimes called Helmholtz tides from their analogy with his theory of compound sounds.
39. The following description extracted from the British Association report of 1920 gives a full account of the Harmonic Tidal constituents that have been derived. It may be mentioned that the nomenclature of the tides has been carried out partly by the use of English, and, partly, by the use of Greek letters. The former were accepted as denoting some of the fictitious satellites of Laplace's theory, eg. M, the mean Moon, S the mean Sun, etc.; the latter from γ, the earth's velocity of rotation, σ the mean motion of the Moon, η, the mean motion of the Sun, $\boldsymbol{\sigma}$, the mean motion of Lunar Perigee. Some were arbitrarily named.
40. Harmonic Tidal Constituents.-The gravitational forces generating the tides are derivable from a potential which is everywhere proportional to what the height of the tide would be if water covered the whole earth and had lost its inertia without losing its gravitational properties.

Such a tide-the equilibrium tide - may be calculated by adding the amounts by which a certain pair of nearly spherical surfaces of revolution project above the mean water level. Each of these surfaces encloses a volume equal to that of the earth, and is slightly variable in shape. They move so that their axes, while always passing through the centre of the earth, also always pass through the centres of the sun and moon respectively. The tides due to either of these spheroids may be expressed as a series of constituents, each of which varies harmonically in a period determined by astronomical data. From dynamical principles it follows that to each of these constithents there will correspond a similar constituent in the actual tides, that is, a constituent varying harmonically in the same period.

To find, in the actual tides at any station, the amplitude of each of these constituents, together with the lag of its phase behind that of the corresponding constituent of the generating potential, is the object of the harmonic analysis of tidal observations.
41. Let us consider the speeds of the constituents of lunar origin; we have to examine the motion, relative to any point on the earth's surface, of the spheroid whose axis passes always through the moon.

The pole of this spheroid which is nearer the moon is a little further from the earth's centre than is the opposite pole, while the whole departure from sphericity depends on the distance of the moon.

Let γ denote the angular speed of the earth's rotation and σ the mean motion of the moon.

If the moon moved with constant angular speed in the plane of the equator and at a constant distance from the earth, we should have, at any station, high water occurring regularly at intervals of $\pi /(\gamma-\sigma)$ with a maximum range of tide at the equator. The rise and fall of the water would not be quite simply harmonic, but could be resolved, with sufficient accuracy, into a harmonic constituent of speed $2(\gamma-\sigma)$, of amplitude inversely proportional to the cube of the moon's distance, and two much smaller constituents of speeds $(\gamma-\sigma), 3(\gamma-\sigma)$, and of amplitudes inversely proportional to the fourth power of the moon's distance. The fact that the moon does not move as here supposed causes many modifications, but it is only on the constituent of speed $2(\gamma-\sigma)$ that their effect need be considered.

Let us suppose the moon to move in the equator, but take into account the elliptic, evectional and variational inequalities in her distance and motion. These inequalities have speeds

$$
\sigma-w, 2(\sigma-w),(\sigma-2 \eta+\pi), 2(\sigma-\eta)
$$

where $\boldsymbol{\sigma}$ denotes the mean motion of the lunar perigee and η that of the sun. The effect of each is to make the moon's sidereal motion increase and decrease with the reciprocal of her distance, and thus to make the period of the tides increase and decrease with their range. The effect of the first order elliptic inequality and the evectional inequality is the introduction of new harmonic constituents of speeds

$$
2(\gamma-\sigma) \pm(\sigma-\varpi), 2(\gamma-\sigma) \pm(\sigma-2 \eta+\varpi)
$$

of which, for the reason just given, the greater are those of speeds

$$
2(\gamma-\sigma)-(\sigma-\varpi), 2(\gamma-\sigma)-(\sigma-2 \eta+\varpi)
$$

The effect of the second order elliptic and evectional inequalities is sufficiently represented by the introduction of new harmonic constituents of speeds-

$$
2(\gamma-\sigma)-2(\sigma-\sigma), 2(\gamma-\sigma)-2(\sigma-\eta) .
$$

The daily mean level of the water depends slightly on the departure from sphericity of the spheroid, so that we have long-period elliptic, evectional, and variational constituents of speeds,

$$
\sigma-\dot{\varpi}, \sigma \cdot 2 \eta+w, 2(\sigma-\eta)
$$

respectively.
If the moon moved with constant angular speed in a parallel of latitude other than the equator, consecutive high tides would be unequal except at the equator, and we should require the introduction of a new constituent of speed $\gamma-\sigma$, with an amplitude vanishing at the equator.

Chap. I.]
The Tides

Also, the amplitude of the constituent speed $2(\gamma-\sigma)$ would be less than when the moon was in the equator.

But since the declination of the moon changes, the diurnal constituent requires modification. If its amplitude could be regarded as changing harmonically with speed σ, it would be replaced by two harmonic constituents of equal amplitudes and speeds $\gamma-\sigma \pm \sigma$.

Owing to the fact that this is not quite so, the amplitude of the constituent of speed $(\gamma-2 \sigma)$ is a little greater than that of speed γ, and there is another smaller constituent of speed $\gamma+2 \sigma$.

Again, introducing the first order elliptic inequality we get new harmonic constituents of speeds $(\gamma-2 \sigma) \pm(\sigma-\varpi), \gamma \pm(\sigma-\varpi)$, of which those of speeds $(\gamma-\sigma \pm \varpi)$ are regarded as forming a single constituent of speed $(\gamma-\sigma)$ and slowly varying amplitude. The second order elliptic, the evectional and variational inequalities give rise to new constituents of speeds $(\gamma-2 \sigma)-2(\sigma-\varpi),(\gamma-2 \sigma)-(\sigma-2 \eta+\varpi)$, $(\gamma-2 \sigma)-2(\sigma-\eta)$.

Also, the changing declination of the moon causes the amplitudes of the semi-diurnal constituents to vary, but it is sufficiently accurate to take mean values in all cases except that of speed $2(\gamma-\sigma)$.

As the effect is to make the speed and range of the tide increase or decrease together, we get a new constituent of speed $2(\gamma-\sigma)+2 \sigma$.

Again, the changing declination of the moon introduces the principal variation in daily mean level, in the form of a constituent of speed 2σ which with the first order elliptic inequality gives two more of speeds $2 \sigma \pm(\sigma-\boldsymbol{*})$.

The amplitudes of all the constituents depending on the inclination of the moon's orbit to the equator vary with the position of the node on the ecliptic. As the monthly mean level also depends on the inclination of the moon's orbit to the equator, we have a small constituent with a speed \dot{N} equal to that of revolution of the moon's nodes. The speeds of the constituents of solar origin may be similarly determined, but only the declinational and first order elliptic effects on the primary constituent need be considered.
42. On collecting the results we have the following tables. The

List of constituents. constituents of the same species have similar geographical distributions of generating potential ; they are arranged in decreasing order of magnitude. The symbols are the same as those in general use, with the exception of σ_{1}, which is now introduced for the first time. The corresponding amplitude in the generating potential is larger than that of some of the constituents given in the

Chap. I.]
Theory and Computation
other species. All the constituents given in the tables have, according to Darwin, larger amplitudes in the generating potential than any omitted.

Semi-Diurnal Species.

Symbol.	Name.		Speed.	Speed in degrees per ms. hour.
M_{2}	Principal lunar	\ldots	$2(\gamma-\sigma)$	$28 \cdot 9841042$
$\mathrm{~S}_{2}$	Principal solar	\ldots	$2(\gamma-\eta)$	$30 \cdot 0000000$
$\mathrm{~N}_{2}$	Larger lunar elliptic	\ldots	$2 \gamma-3 \sigma+\varpi$	$28 \cdot 4397296$
$\mathrm{~K}_{2}$	Luni-solar declinational	\ldots	2γ	$30 \cdot 0821372$
v_{2}	Larger lunar evectional	\ldots	$2 \gamma-3 \sigma+2 \eta-\varpi$	$28 \cdot 5125830$
$\mathrm{~L}_{2}$	Smaller lunar elliptic	\ldots	$2 \gamma-\sigma-\varpi$	29.5284788
$\mathrm{~T}_{2}$	Solar elliptic	\ldots	$2 \gamma-3 \eta$	$29 \cdot 9589314$
$2 \mathrm{~N}_{2}$	2nd order lunar elliptic	\ldots	$2 \gamma-4 \sigma+2 \sigma$	$27 \cdot 8953548$
μ_{2}	Lunar variational	\ldots	$2 \gamma-4 \sigma+2 \eta$	$27 \cdot 9682084$
λ_{2}	Smaller lunar evectional	\ldots	$2 \gamma-\sigma-2 \eta+\boldsymbol{\sigma}$	$29 \cdot 4.556254$

Principal Diurnal Species.

Symbol.	Name.	Speed.	Speed in degrees per ms. hour.
K_{1}	Luni-solar declinational	γ	15.0410686
O_{1}	Larger lunar declinational	$\gamma-2 \sigma$	$13 \cdot 9430356$
P_{1}	Larger solar declinational	$\gamma-2 \eta$	14.9589314
Q_{1}	Lunar elliptic ...	$\gamma-3 \sigma+\boldsymbol{\tau}$	13•3986609
J_{1}	Supplementary lunar elliptic	$\gamma+\sigma$ - ${ }^{\text {d }}$	15-5854433
OO_{1}	Second order lunar	$\gamma+2 \sigma$	$16 \cdot 1391016$
${ }_{\sim}^{\rho_{1}}$	Lunar evectional	$\gamma-3 \sigma+2 \eta-$ w	$13 \cdot 4.715144$
$2 \mathrm{Q}_{1}$	2nd order lunar elliptic	$\boldsymbol{\gamma}-4 \sigma+2 \boldsymbol{\square}$	12.8542862
σ_{1}	Lunar variational	$\gamma \cdots 4 \sigma+2 \eta$	12.9271398

Ceap. I.] The Tides

Long Period Species.

Symbol.	Name.	Speed.		Speed in degrees per ms. hour.
Mf	Lunar fortnightly	2σ	\ldots	$1 \cdot 0980330$
Mm	Lunar monthly ...	$\sigma-\boldsymbol{\sigma}$.	$0 \cdot 544.3747$
Ssa	Solar semi-annual...	2η	\ldots	$0 \cdot 0821372$
-	Nineteen yearly ...	$\dot{\mathrm{N}}$...	19.34, per annum
-	Ter-mensual	$3 \sigma-\infty$		$1 \cdot 6424077$
-	Monthly evectional	$\sigma-2 \eta+\infty$.	0-4715211
MSf	Fortnightly variational	$2(\sigma-\eta)$		1-0158958
Sa	Solar annual	η	\ldots	$0 \cdot 0410686$

Note 1.-The speeds in degrees per ms. hour have been added to the tables given in the B. A. report and the nomenclature of tides made to agree with that in use on the tide-predicting machine and in the compatations.

Note 2.-The oubscript figures after the initial letter or letters in the symbols applied to a tide refer to the period of the tide. Thus M_{1} is a lunar dinenal tide, M_{2} a lunar semi-diarnal tide, M_{4} a lonar quarter-diurnal overtide.
$\left(2 \mathrm{M}_{2} \mathrm{~K}_{3}\right)_{3}$ is a compond ter-dinrnal tide, $\mathrm{M}_{2} \mathrm{~N}$ a compound quarter-diurnal tide, etc.

Besides the above there is the constituent M_{1} of speed $\gamma-\sigma$ which consists partly of that of variable amplitude of the principal diurnal species and partly of that of amplitude inversely proportional to the fourth power of the moon's distance. There is also the ter-diurnal constituent M_{3} of speed $3(\boldsymbol{\gamma}-\sigma)$ and amplitude inversely proportional to the fourth power of the moon's distance.

Shallow Water Congtituents.

43. In shallow water a harmonic constituent is accompanied by others having for their phases multiples of the phase of the primary constituent. Also, two harmonic constituents are accompanied by two others, having for their phases the sum and difference of the phases of the primary constituents. Some of these shallow water constituents have speeds the same as those of certain primary constituents, (vide the description of overtides and compound tides paras $37 \& 38$.)

In the following tables only those shallow water constituents are mentioned which it has been the custom to consider hitherto.

Chap. I.]
Theory and Computation

Primary Constituents affected by Shallow Water Constituents.

Other Shallow Water Constituents.

Symbol.	Primary constituent of shallow water effect.	Speed.		Sperd in degrees per ms. hour.
M_{4}	M_{2}	$4(\gamma-\sigma)$	\ldots	57.9682082
M_{6}	M_{2}	$6(\gamma-\sigma)$		86.9523126
M_{8}	M_{2}	$8(\gamma-\sigma)$	\ldots	$115 \cdot 9364164$
S_{4}	S_{2}	$4(\boldsymbol{\gamma}-\eta)$	\ldots	$60 \cdot 0000000$
S_{6}	S_{3}	$6(\gamma-\eta)$	\ldots	$90 \cdot 0000000$
$(\mathrm{MS})_{4}$	$\mathrm{M}_{2} \mathrm{~S}_{3}$	$4 \gamma-2 \sigma-2 \eta$	\ldots	58.984,1042
$\left(\mathrm{M}_{2} \mathrm{~K}_{1}\right)_{3}$	$\mathrm{M}_{2} \mathrm{~K}_{1} \mathrm{M}_{4} \mathrm{O}_{1}$	$3 \gamma-2 \sigma$	\ldots	$44 \cdot 0251728$
$\left(2 \mathrm{M}_{2} \mathrm{~K}_{1}\right)_{3}$	$\mathrm{M}_{2} \mathrm{O}_{1} \mathrm{M}_{4} \mathrm{~K}_{1}$	$3 \gamma-4 \sigma$		$42 \cdot 9271398$
$\left(\mathbf{S}_{0} \mathrm{~K}_{1}\right)_{3}$	$\mathbf{S}_{9} \mathrm{~K}_{1}$	$3 \gamma-2 \eta$		$45 \cdot 04.10686$
$\left(\mathrm{M}_{2} \mathrm{~N}\right)_{4}$	$\mathrm{M}_{2} \mathrm{~N}_{2}$	$4 \gamma-5 \sigma+$ -		$57 \cdot 4238338$
(2SM)	$\mathrm{S}_{4} \quad \mathrm{M}_{3}$	$2 \gamma+2 \sigma-4 \eta$	\ldots	$31 \cdot 0158958$

Meteorologichi Constituents.

44. The observed values of S_{sa} and Sa are largely of meteorological origin, as also those of S_{1} of speed $\gamma-\eta$ or $15 \cdot 0000000$ degrees per ms. hour.
45. Only 94 of the tides above described are taken account of by the tide-predicting machine, viz :-
$\mathrm{M}_{2}, \mathrm{~S}_{2}, \mathrm{~K}_{1}, \mathrm{O}, \mathrm{N}, \mathrm{P}, \mathrm{K}_{2}, \mu, \nu, \mathrm{~L}, \mathrm{~T}, \mathrm{Q}, \mathrm{J}, \mathrm{MS}, 2 \mathrm{SM}, \boldsymbol{\eta}$ or $\mathrm{Sa}, 2 \eta$ or $\mathrm{Ssa}, \mathrm{M}_{4}, \mathrm{M}_{6}, \mathrm{~S}_{1}, 2 \mathrm{~N}, \mathrm{M}_{2} \mathrm{~N}, 2 \mathrm{M}_{2} \mathrm{~K}_{1}$ and $\mathrm{M}_{2} \mathrm{~K}_{1}$, of which about 12 represent the true astronomical tide. This number of components is sufficient to represent the tide at all seaports, but the number of components is not sufficient to represent the tide at Riverain ports which have to be dealt with by the method of computing the semidiurnal tide, and correcting it by means of a curve run on the machine for the diurnal tide, as explained in Chapter I para 109.

Bibliography

46. The following books will be found of assistance in connection with the study of tidal theory :-

Mécanique Celeste of Laplace 1829-1832.
Notes on the Harmonic Analysis of Tidal Observations, prepared for the use of officers of the Great Trigonometrical Survey of India. London. 1872.

Memorandum on Indian Tides. Commander A. Dundas Taylor I. M. \& F. R. G. S. 1878.

An account of the Tidal Observations in the Gulf of Cutch. J. Waterhouse. Journal of the Asiatic Society of Bengal. 1878.

Harmonic Analysis. G. H. Darwin. Report to the British Association 1883.

Results of the Harmonic Analysis of Tidal Observations. A. W. Baird, R.E. and Prof. G. H. Darwin, F.R.S. Reprinted from the proceedings of the Royal Society, 1885.

Baird's Manual for Tidal observations 1886.
Bakerian lecture on Tidal Prediction. Prof. G. H. Darwin F.R.S. 1891.

Mathematical Astronomy. Barlow and Bryan 1892.
Tidal Rivers. W. H. Wheeler M.I.C.E. 1893.
The Latitude variation tide. A.S. Christie. Philosophical Society of Washington Bulletin Vol. 13,1895.

The Tides. Prof. G.H. Darwin, 1901. A good elementary text book.
United States Coast and Geodetic Survey Report 1897. This gives a very complete historical and theoretical discussion regarding tides.

Treatise on Natural Philosophy. Lord Kelvin (Sir W. Thomson) and Tait 1912.

Articles on Tides in the Encyclopædia Britannica, 1lth edition, which include extracts from papers by S.S. Hough from the Philosophical Transactions of the Royal Society. A 1897 pp. 201 to 258, A 1898 pp. 139 to 185.

British Association Reports for the advancement of Science of 1920 and 1921.

The Harmonic Development of the Tide-generating Potential. Dr. A. T. Doodson, D. Sc. from the Proceedings of the Royal Society, 1921.

Intensive Analysis of Tidal Observations. Dr. A.T. Doodson, D. Sc. 1921.

Nature No. 2684 Vol. 107. 1921.
Do. No. W. 2727 Vol. 109. 1922. etc.
Harmonic Analysis of Tidal ()bservations.
47. Before proceeding to an account of the method in which the observations are manipulated numerically, it will be advisable to give a brief sketch of some of the properties of harmonic curves, their connection with the tidal observations and the means of determining the various constants.

A curve of this form may be represented by the equation
Harmonic curves.

$$
y=a \cos (n x+b)
$$

The curve is periodic, that is to say, after a certain period it takes its original form: for if $x+\frac{2 \pi}{n}$ is put for x, y again becomes

$$
a \cos (n x+b)
$$

If $\frac{2 \pi}{n}$ is put equal to λ, then the quantity λ is called the 'wavelength' of the curve; for it is the distance along the axis of x between two successive equal and similarly placed ordinates. The constant a is called the 'amplitude' of the curve because its value is that of the greatest displacement. The angle $n x+b$ or $\frac{2 \pi}{\lambda} x+b$ is called the 'phase' of the curve: the constant b is therefore known if the phase is given for any value of x.

Any two curves of equal wave-length may be combined into another of the same wave-length. For the equation

$$
\begin{aligned}
y & =a_{1} \cos \left(\frac{2 \pi}{\lambda} x+b_{1}\right)+a_{2} \cos \left(\frac{2 \pi}{\lambda} x+b_{2}\right) \\
& =\left(a_{1} \cos b_{1}+a_{2} \cos b\right) \cos \frac{2 \pi}{\lambda} x-\left(a_{1} \sin b_{1}+a_{2} \sin b_{2}\right) \sin \frac{2 \pi}{\lambda} x
\end{aligned}
$$

Chap. I.]
The Tides

$$
=A \cos \left(\frac{2 \pi}{\lambda} x+B\right)
$$

where

$$
A^{2}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \cos \left(b_{1}-b_{2}\right)
$$

and

$$
\tan B=\frac{a_{1} \sin b_{1}+a_{2} \sin b_{2}}{a_{\mathrm{i}} \cos b_{1}+a_{2} \cos b_{2}}
$$

represents a harmonic curve of the same wave-length as the two components. Similarly for any number of curves of the same wavelength.

Two or more curves of different wave-lengths cannot however be combined into a single harmonic curve; but if the wave-lengths are commensurable the resultant curve is periodic. For let
$y=a_{1} \cos \left(\frac{2 \pi}{\lambda_{1}} x+b_{1}\right)+a_{2} \cos \left(\frac{2 \pi}{\lambda_{2}} x+b_{2}\right)+a_{3} \cos \left(\frac{2 \pi}{\lambda_{3}} x+b_{3}\right)+\& c .$, and let λ be the least common multiple of $\lambda_{1}, \lambda_{2}, \lambda_{3}$, \&c., so that their actual values are $\frac{\lambda}{m_{1}}, \frac{\lambda}{m_{2}}, \frac{\lambda}{m_{3}}$, \&c., where m_{1}, m_{2}, m_{3} : \&c., are integers; then $y=a_{1} \cos \left(\frac{\stackrel{2}{2}}{\lambda} m_{1} x+b_{1}\right)+a_{2} \cos \left(\frac{2 \pi}{\lambda} m_{2} x+b_{2}\right)+\& c$., and if $x+\lambda$ is put for x the value of y is unaltered, so that the resulting curve is a periodic curve of wave-length λ.
48. Such are a few of the properties of harmonic curves, and the

Conaection between harmonic carves and tidal observations next thing to be done is to point out the connection between harmonic curves and tidal observations.

In a Report of a Committee for the Harmonic Analysis of Tidal Ohserrations for the British Association, 1883, Professor G. H. Darwin has deduced an expression for the height of the tide at any time : each term, which is of the harmonic form $R \cos (n t-\xi)$, arises from some specific cause in the elaboration of the equilibrium theory of tides and is regarded as a separate tide due to this cause. Thus there are as many tides as there are terms in the series, and the height of each simple tide is equal to a constant, R, multiplied by the cosine of a certain angle $n t-\zeta$ called the 'argument', which is partly made up of a simple function of the time and partly dependent on the position of the sun or moon or both.

The maximum value of the cosine being unity, the constant, R, gives the greatest height above the mean of the particular tide, that is, the 'semi-range' or 'amplitude'.

Chap. I.]
Theory and Computation

The part of the argument which is a function of the time is of the form $n t$, so that n represents the rate at which the argument increases: it is called the 'speed' of the tide and is reckoned in mean solar hours. Also since the tide's maximum occurs when the remainder of the argument, $v i z ., \zeta$ is equal to $n t$, it follows that $\frac{\zeta}{n}$ gives the time which must elapse from the beginning of the observations till the time of the first high-water of the tide : ζ is therefore called the 'epoch'.
49. For the purpose of arithmetical calculation the form $R \cos$

Determination of constants R and S. ($n t-\zeta$) in which the tide is presented, is not con. venient and it is therefore expanded into

$$
A \cos n t+B \sin n t
$$

so that $\quad R^{2}=A^{2}+B^{2} \quad$ and $\quad \tan \zeta=\frac{B}{A}$;
and the immediate object of the numerical reductions is to find the A 's and B 's from which the R 's and ζ 's are at once obtained by means of the above equations. It now remains to explain how the A 's and R 's are determined from the observations.

The expression deduced by Darwin gives for the height of the tide at any time,

$$
h=A_{0}+\Sigma(A \cos n t)+\Sigma(B \sin n t) .
$$

Now among these n 's will be found $n_{1}, 2 n_{1}, 3 n_{1}$, etc.; $n_{2}, 2 n_{2}, 3 n_{2}$; and so on, and it would be practically impossible to determine the corresponding A 's and B 's in a direct manner. It has, however, been found possible, by a method of manipulation of the observed quantities which will be explained below, to separate the terms containing n_{1} from all the others, and then the problem presents no difficulty. As will be explained, it is reduced to the question of determining the constants from a series of equations of the form
$h=A_{0}+A_{1} \cos n t+B_{1} \sin n t+A_{2} \cos 2 n t+B_{2} \sin 2 n t+\& c .$, where t has any integral value from 0 to $\frac{2 \pi}{n}$, so that $n l$ goes through its variations from 0 to 2π.

Now it is clear, if r and s be any two integers, and the summation extends from $t=0$ to $t=\frac{2 \pi}{n}$, that

$$
\Sigma \cos r n t=0, \text { and } \Sigma \sin r n t=0,
$$

since to each positive value, there is a corresponding negative value of the cosine or sine.

$$
\text { Also } \Sigma \cos ^{2} r n t=\frac{1}{2} \Sigma(1+\cos 2 r n t)=\frac{\pi}{n} ;
$$

Chap. I.]
and $\quad \Sigma \sin ^{2} r n t=\frac{1}{2} \Sigma(1-\cos 2 r n t)=\frac{\pi}{n}$;
$\Sigma \cos r n t \cos s n t=\frac{1}{2} \Sigma \cos (r+s) n t+\frac{1}{2} \Sigma \cos (r-s) n t=0$, and similarly
$\Sigma \cos r n t \sin s n t$ and $\Sigma \sin r n t \sin s n t$ are each equal to zero.
Consequently for determining the constants there are the following equations:-

$$
\begin{array}{ll}
\Sigma h=\frac{2 \pi}{n} A_{0}, & \text { or } A_{0}=\frac{n}{2 \pi} \Sigma h ; \\
\Sigma h \cos r n t=\frac{\pi}{n} A_{r}, & \text { or } A_{r}=\frac{n}{\pi} \Sigma h \cos r n t ; \\
\Sigma h \sin r n t=\frac{\pi}{n} B_{r}, & \text { or } B_{r}=\frac{n}{\pi} \Sigma h \sin r n t .
\end{array}
$$

The A 's and B 's being now determined, the R 's and ζ 's are calculated from the two formulæ given above.

The method of determining the A 's and B 's described above is only applicable to the short-period tides: the means of determining them for the long-period tides will be described hereafter.
50. But in order that a comparison of the records of different years may be made, it is necessary to exhibit the

Determination of
constants H and κ height of the tide in yet a different form ; for when it is represented by $R \cos (n t-\zeta)$, it is clear that ζ may have any value from 0 to 360° and that the results of the analysis of successive years of observations will not be comparable with each other.

Such being the case, let it be supposed that the results of the analysis are presented in a number of terms of the form

$$
f H \cos (V+u-\kappa)
$$

Here V is a linear function of the moon's and the sun's mean longitudes, the mean longitudes of the moon's and the sun's perigees, and the local mean solar time at the place of observation reduced to angle at 15^{c} per hour. $\quad{ }^{\text {r }}$ therefore increases uniformly with the time and its rate of increase per mean solar hour is the n of the first method, or the ' speed' of the tide.

It is supposed that u stands for a certain function of the longitude of the node of the lunar orbit, at an epoch half a year later than $0^{\prime \prime}$ of the first day. Strictly speaking, n should be taken as this same function of the longitude of the moon's node, varying as the node moves; but as the variation is but small in the course of a year, u may be treated as a constant and put equal to an average value for the year, which average value is taken as the true value of u at exactly mid-year.

Together $V+u$ constitute the whole 'argument'* according to the equilibrium theory of tides, with the sea covering the whole earth; and it therefore follows that $\frac{\kappa}{n}$ is the lagging of the tide which arises from kinetic action, friction of the water, imperfect elasticity of the earth, and the distribution of the land.

It is also supposed that H is the mean value in British feet of the semi-range of the particular tide in question; and f is a numerical factor of augmentation or diminution due to the variability of the obliquity of the lunar orbit: the method of determining it is fully explained in, and its values tabulated at the end of Professor Darwin's Report and also in the Auxiliary Tables appended.

It is obvious then, that if the tidal observations are consistent from year to year, H and κ should come out the same from each year's reductions : and it is only when the results are presented in such a form as this, that it will be possible to judge whether the harmonic analysis is giving satisfactory results.

The determination of \mathbf{H} and κ from \mathbf{R} and ζ is made as follows :Clearly $\mathbf{H}=\frac{\mathrm{R}}{f}$ and is at once found; also $n t-\zeta$ is identical with $V+u-\kappa$, so that if F_{0} be the value of V at 0^{n} of the first day, that is when $t=0$, then,
so that

$$
\begin{aligned}
-\zeta & =V_{0}+u-\kappa ; \\
\kappa & =\zeta+V_{0}+u .
\end{aligned}
$$

Thus the rule for the determination of κ is :-add to the value of ζ the value of the 'argument'* at 0^{h} of the first day.

The above statement of procedure applies to nearly all the tides except K_{1}, \& K_{2}, which have their origins jointly in the tide-generating forces of the sun and the moon, and also the tides $L \& M_{1}$, which are rendered complex from the fact that the tidal analysis only extends over a year. These tides require special treatment as explained in Part I pages 54 to 58 of Volume 16 G. T. Survey. For the various tides both those requiring special treatment as well as those ordinarily treated the tables Nos. 1 to 20 have been provided to facilitate the computation of which a sample is given, from which the procedure may be readily followed.

The tides are divided for purposes of calculation into short period and long period tides as explained previously. The short

[^5]period tides are still further sub-divided into semi-diurnal and diurnal tides. The former have periods equal or nearly equal to 12 mean solar hours and the latter have periods equal or nearly equal to 24 mean solar hours. Besides these there are the 'overtides' and 'compound' tides whose origin has already been explained. The long period tides have periods of about a fortnight, a month, half a year or a year, as the case may be. A table giving a list of the tides with speeds, initial arguments and factors for reduction, which will be found of assistance, is given below.
51. The symbols in the table have the following meanings :List of tides.
$\gamma=$ earth's angular velocity of rotation.
$\sigma=$ mean motion of the moon.

$\begin{array}{lllll}\eta= & " & " & \text { sun. } \\ w= & " & " & " & \text { lunar perigee. }\end{array}$
$n=$ sun's mean longitude.
$p=$ mean longitude of the moon's perigee.
$v=$ right ascension of the 'intersection' or descending node of the equator on the lunar orbit.
$s=$ moon's mean longitude.
$\boldsymbol{\xi}=$ longitude ' in the moon's orbit' of the 'intersection.'
$I=$ obliquity of the lunar orbit to the equator.
$\omega=\quad$, ecliptic.
$i=$ inclination of the moon's orbit to the ecliptic.
$P=$ longitude of the moon's perigee at mid-year measured from the 'intersection.'
The letters with the zero subscript represent the values of the corresponding functions at 0^{h} of the lst day of the year of observation.

LIST OF TIDES

Chap. I.]
The Tides

LIST OF			
Initial	Speed in aymbols and in m.s. hours		Name of tide
S,	$\boldsymbol{\gamma} \boldsymbol{\eta}$	15°	Principal Solar Diurnal
S_{2}	$2(\gamma-\eta)$	30	$\begin{array}{cc}\text { Principal } & \text { Solar Diurnal } \\ \text { ", } & \text {, } \\ \end{array}$
${ }^{*} S_{4}$	$4(\gamma-\eta)$	60) Principal Solar Series Over-Tides
${ }^{*} \mathrm{~S}_{6}$	$6(\gamma-\eta)$	90	
${ }^{*} \mathrm{~S}_{8}$	$8(\gamma-\eta)$	120	
P_{1}	$\gamma-2 \eta$	14.9589 .314	Larger Solar (Declinational) Diurnal Solar Elliptic
T ${ }_{2}$	$2 \gamma-3 \eta$	29.9589314	
${ }_{*} \mathrm{M}_{1}$	$\gamma-\sigma-\sigma^{-}$and	14.4920521	Principal Lanar Diarnal
	$\boldsymbol{\gamma - \sigma + \sigma}$		
M_{2}	$2(\gamma-\sigma)$	28.9841042	" " Semi-Diarnal
${ }^{*} \mathrm{M}_{3}$	$3(\gamma-\sigma)$	43.476156.	Principal Lunar Series Over-Tides
M_{4}	$4(\gamma-\sigma)$	57.9682082	
M_{6}	$6(\gamma-\sigma)$	86.9523126	
* M_{8}	$8(\gamma-\sigma)$	115.9364164	
K_{1}	γ	15.0410686	Lani-Solar Diarnal (Declinational)
K_{2}	2γ	$30 \cdot 0821372$., " Semi-Diarnal ,
N_{2}	$2 \gamma-3 \sigma+w$	$28 \cdot 4397296$	Larger Lunar Elliptic
${ }_{2} \mathrm{~N}_{2}$	$2 \gamma-4 \sigma+2 \pi$	$27 \cdot 8953548$	Lunar Elliptic, 2nd order
L	$2 \gamma-\sigma-\sigma$ and	29.5284788	Smaller Lunar Elliptic
	$2 \gamma-\sigma+\pi$		
ν_{2}	$2 \gamma-3 \sigma-\boldsymbol{*}+2 \eta$	28.5125830	Larger Lunar Evectional
O_{1}	$\gamma-2 \sigma$	$13.94 .3035{ }^{6}$	Lanar (Declinational) Diurnal
Q ${ }_{1}$	$\gamma-3 \sigma+\boldsymbol{\sigma}$	13.3986609	Lanar Elliptic Diurnal
J_{1}	$\gamma+\sigma=\sigma$	$15 \cdot 5854433$	Supplementary Lunar Elliptic diarnal
(MS) ${ }_{4}$	$4 \gamma-2 \sigma-2 \eta$	58.9841042	
μ_{2} or 2 MS	$2 \gamma-4 \sigma+2 \eta$	27.9682084	
(2SM) ${ }^{2}$	$2 \gamma+2 \sigma-4 \eta$	31.0158958	$\}$ Compound Tides
$\left(\mathrm{M}_{2} \mathrm{~K}_{1}\right)_{3}$	$3 \gamma-2 \sigma$	44.0251728	Compoand
$\left(2 M_{2} \mathrm{~K}_{1}\right)_{3}$	$3 \gamma-4 \sigma$	429271398	
($\left.\mathrm{M}_{2} \mathrm{~N}\right)_{4}$	$4 \gamma-5 \sigma+ \pm$	$57 \cdot 4238338$	
- MSf	$2 \sigma-2 \eta$	$1 \cdot 0158958$	Variational Fortnightly
* Mm	σ - ${ }^{-}$	- 5443747	Lunar Monthly
** Mf	2σ	$1 \cdot 0980330$, Fortnightly
8 B	η	0.0410686	Solar Annual
8:a	2π	0.0821372	, Semi-Annuak

- Not used for purposes of prediction.

TIDES

52. The tide-gauge gives a graphical record of the height of the water above some known datum for every instant of time. The first operation performed on the tidal record is the measurement, in feet and decimals, of the height of the water above the true zero of the gauge (the height of which relatively to the datum is known) at every mean solar hour. The period chosen for analysis is about one year, and the first measurement corresponds to noon, but it has been found inconvenient hitherto to have the same initial noon at the several ports.

It would seem, at first sight, preferable to take the measurements at each mean lunar hour; but the whole of the actual process in use is based on measurements taken at the mean solar hours, and a change to lunar time would involve a great deal of fresh labour and expense.

If ' I be the period of any one of the diurnal tides, or the double period of any one of the semi-diurnal tides, it approximates more or less nearly to 24 mean solar hours, and if it be divided into 24 equal parts, each part may be spoken of as a T-hour, while for brevity mean solar time will be referred to as S -time.

Suppose, now, that there are two clocks, each marked with 360° or 24 hours, and that the hand of the first or S-clock goes round once in 24 S-hours and that of the second or T-clock goes round once in 24. T-hours; and suppose that the two clocks are started at 0° or 0^{b} at noon of the initial day. For the sake of distinctness, imagine that a T-hour is longer than an S-hour so that the T-clock goes slower than the S-clock.

The measurements of the tide-curve give the height of the water exactly at each S-hour ; and it is required from these data to determine the height of the water at each T-hour. For this end, it is necessary to count T-time; but this must be done with reference to S-time and, moreover, the time must always be specified as an integral number of hours.

Beginning, then, with 0^{b} of the first day, it is necessary to count $0,1,2, \& c$., as the T-hand comes up to its hour marks. But as the S-hand gains on the T-hand, there will come a time when the T-hand, being exactly at the p hour-mark, the S-hand is nearly as far as $p+\frac{1}{2}$. When, however, the T-hand has advanced to the $p+1$ hour-mark, the S-hand will be a little beyond $p+1+\frac{1}{2}$; that is to say, a little less than half-an-hour before $p+2$. Counting, then, the T-hours in S-time, it is necessary to jump from p to $p+2$. The counting will go on continuously for a number of hours nearly equal to $2 p$, and then another

Сhap. I.]

'Thbory and Computation

number will be dropped, and so on throughout the whole year. If the T-hand went faster than the S-hand, it is obvious that one number would be repeated at two successive hours instead of one being dropped. Each such process may be described as a 'change'.

Now if there is a sheet marked for entries of heights of water according to T-hours from results measured at S-hours, the S-measurements must be entered continuously up to p : then comes a change' and the dropping of one of the S-series, after which the entry goes on continuously until another 'change' when another is dropped, and so on.

Since a 'change' occurs at the time when a 'I'hour falls almost exactly between two S-hours, it will be more accurate to insert the two S-entries which fall on each side of the truth. If this be done the whole of the S -series of measurements is entered on the T-sheet. Similarly if it is the T-hand which goes faster than the S-hand a gap may be left in the T-series instead of duplicating an entry. For the analysis of the T-tide there is, therefore, prepared a sheet arranged in rows and columns : each row corresponds to one T-day and the columns are marked $0^{\mathrm{h}}, \mathrm{l}^{\mathrm{h}}, \ldots .23^{\mathrm{h}}$; the 0^{h} 's may be called T -noons. . A dot is put in each space for entry, and where there is a 'change' two dots are put if there is to be a double entry, and a bar if there is to be no entry; black vertical lines mark the end of each S-day. These black lines will, of course, fall into slightly irregular diagonal lines across the page, being steeper and steeper, the more nearly T-time approaches to S-time. They slope downwards from right to left if the T-hour is longer than the S-hour, and the other way in the opposite case. The 'changes' also run diagonally with a slope in the opposite direction to that of the black lines when the T-hour is longer than the S-kiour; and in the same direction in the opposite case.

A sample is annexed of parts of pages drawn up for the entries of the M -series and J -series of tides, in the former of which T -time is mean lunar time.

Chap. I.]

The 'IIdes

Since the first day is numbered 1 and the first hour 0^{h}, it follows that to find the number of hour values entered in the form from () $)^{\text {h }}$ of the first day, it is necessary to subtract 1 from the number of the day and to add 1 to the number of hour.

For each class of tide there are five pages similar to the annexed examples, giving in all about 370 values for the height of the water at each of the 24 special hours : the number of values for each hour varies slightly according as more or less 'changes' fall into each column.

The numbers entered in each column are summed on each of the five pages; the five sets of results are now summed and the results divided each by the proper divisor for its column, thus giving a mean value for that column. In this way 24 numbers are found which give the mean height of the water at each of the 24 special hours.
53. Now it is obvious that if the heights be taken for each mean

Eliminating effects of other tides. solar hour for a very long period, and the 24 averages taken, grouped and subjected to analysis as above, the result will exactly express the particular tide under investigation and the influences of all the other tides will be eliminated, because of the great number of the periods included in the summation; for although the other constituents would no doubt influence each individual height, yet in that period they will have been in such a number of different positions all round the circle of revolution, that in the averagings their force would be eliminated.

The elimination can however never be quite complete, as the period of analysis only extends over about a year, and the selection of certain periods not quite equal to a year for analysis will theoretically minimise the effects of the varions tides on each particular tide.

For, suppose that the expression for the height of the water is

$$
\mathrm{A}_{1} \cos n_{1} t+\mathrm{B}_{1} \sin n_{1} t+\mathrm{A}_{2} \cos n_{2} t+\mathrm{B}_{2} \sin n_{2} t
$$

where n_{2} is nearly equal to n_{1}, and that it is required to eliminate the n_{2}-tide so as to be left only with the n_{1}-tide.

The expression may then be put equal to

$$
\begin{aligned}
\left\{\hat{\mathrm{A}}_{1}+\mathrm{A}_{2} \cos \left(n_{1}-n_{2}\right) t-\mathrm{B}_{2} \sin \left(n_{1}-n_{2}\right) t\right\} \cos n_{1} t \\
+\left\{\mathrm{B}_{1}+\mathrm{A}_{2} \sin \left(n_{1}-\mu_{2}\right) t+\mathrm{B}_{2} \cos \left(n_{1}-n_{2}\right) t\right\} \sin n_{1} t ;
\end{aligned}
$$

which shows that the tide may be regarded as oscillating with a speed n_{1}, but with slowly varying range. Now, in the column appertaining to any hour in the form, $n_{1} t$ is a multiple of 15°, if n_{1} be a diurnal ; and of 30°, if n_{1} be a semi-diurnal tide. Consider the column headed ' p-hour'; then $n_{1} t=155^{\circ} p$ for diurnals and $30^{\circ} p$ for semi-diurnals.

Hence the sum of all the entries, of which suppose there are q, in the column numbered p-hours, is for diurnal tides,
$\cos 15^{\circ} p\left\{\mathrm{~A}_{1} q+\mathrm{A}_{2}\left[\cos \left(n_{1}-n_{2}\right) \frac{15 p}{n_{1}}+\cos \left(n_{1}-n_{2}\right)\left(\frac{2 \pi}{n_{1}}+\frac{15 p}{n_{1}}\right)\right.\right.$
$\left.\left.+\cos \left(n_{1}-n_{2}\right)\left(2 \frac{2 \pi}{n_{1}}+\frac{15 p}{n_{1}}\right)\right]+\mathrm{B}_{2}[\& c].\right\}+\sin 15^{\circ} p\{\& c.\} \ldots(a)$
and for semi-diurnal tides, the arguments of all the circular functions in the expression (a) are to be doubled.

Now such a number of terms is to be chosen, that the series by which A_{2} and B_{2} are multiplied may vanish. This is exactly the case, if the series is exactly re-entrant and is nearly the case, if nearly re-entrant.

The condition is exactly satisfied, if
or

$$
\begin{aligned}
& \left(n_{1}-n_{2}\right) q \frac{2 \pi}{n_{1}}=2 \pi r \text { for diurnal tides, } \\
& \left(n_{1}-n_{2}\right) \varphi \frac{4 \pi}{n_{1}}=2 \pi r \text { for semi-diurnal tides, }
\end{aligned}
$$

where r is either a positive or negative integer.
That is to say, if

$$
\left(n_{1}-n_{2}\right) q=n_{1} r \text { for diurnal tides, }
$$

$$
\left(n_{1}-n_{2}\right) q=\frac{1}{2} n_{1} \text {. for semi-diurnal tides. }
$$

It is not worth while attempting to eliminate the effects of the semi-diurnal tides on the diurnal tides and vice versd, because the periods could only differ by the fraction of a day, and owing to the incommensurability of the speeds, it is impossible to avoid being wrong to that amount.

It is of course impossible to choose for each tide n_{1}, a period which shall minimise the effects of more than one of the tides of short-period n_{2}, in vitiating the values of the mean semi-ranges of the tide n_{1}; and accordingly the periods have been chosen so as to minimise the effect of the principal solar semi-diurnal tide S_{2} on the principal lunar semidiurnal tide M_{2} and of the M_{2} tide upon the other semi-diurnal tides: in the case of the diurnal tides, the periods are chosen to minimise the effects of either O or K_{1}.

In choosing the period for reduction 369 days 3 hours was taken for the \mathbf{S} and M tides, as being to the nearest hour, $12 \frac{1}{2}$ lunations or 25 periods of spring and neap tides, and therefore giving the least possible influence of the mean lunar and solar semi-diurnal tides, each on the sets of averages used in the calculation of the other.

For the $\mathrm{L} \& \mathrm{~N}$ semi-diurnal tides a period of 358 days 6 hours was chosen as being a period containing an integral number of periods of these tides, and eliminating as far as possible the chief or semidiurnal lunar tide. Similarly the period for the ν tide was found to be 349 days 22 hours, and for the J \& Q tides 370 days 5 hours. These 5 tidal constituents are all elliptic.

For the declinational tidal constituents the periods found similarly to those above are all so nearly equal, that the same period, viz :-369 days 3 hours, has been used for the whole of them.

Tabulating these periods we have

Tides named for brevity					Periods
S, M, O, K, P, μ, T, MS, ${ }_{2} \mathbf{S M} 2 \mathrm{~N}, \mathrm{M}_{2} \mathrm{~N}, \mathrm{M}_{2} \mathrm{~K}_{1}, 2 \mathrm{M}_{2} \mathrm{~K}_{1}$,					369 days
					3 hours
J, Q,	\ldots	\cdots	\ldots	\ldots	370 days
					5 hours
L, N,	...	\ldots	\ldots	\ldots	358 days
					6 hours
ν,	\ldots	\ldots	\ldots	\ldots	349 days
					22 hours

These periods are those actually used in the computations and some of them do not exactly agree with those given in the theoretical explanation on pages 67-73 Part 1 Volume 16 G. T. S., though in the sample computations given on pages $80-279$ of the same Volume, the correct periods, as given above, are adopted.

Returning now to the general notation and considering the 24 mean values, each pertaining to the 24 T-hours, it may be supposed that all the tides, excepting the T-tide, are adequately eliminated, and, in fact, a computation of the necessary corrections for the absence of complete elimination, which is given in Tidal Report of 1872, of the Tidal Committee of the B. A. under the presidency of Sir William Thomson, shows that this is the case.
54. Now it is obvious that any one of the 24 falues does not give

Augmenting factors for correcting heights. true height of the T-tide at the T-hour, but gives the average height of water, as due to the T T -tide, estimated over half a T-hour before and half a T-hour after that hour. A correction must therefore be determined on this account.

The required expression for the height of the tide at any T-hour is $k=\mathrm{A}_{1} \cos \theta+\mathrm{B}_{1} \sin \theta .+\& \mathrm{c}, \& \mathrm{cc} .+\mathrm{A}_{r} \cos r \theta+\mathrm{B}_{r} \sin r \theta+\& \mathrm{c}$.

But the results of analysis give instead of this the mean of all the h 's between the limits $\theta+\frac{a}{2}$ and $\theta-\frac{a}{2}$.

That is $h a=\Sigma h$ between these limits
$=\& c .+\Sigma A_{r} \cos r \theta+\Sigma \mathrm{B}_{r} \sin r \theta+\& c$. between these limits, or $\quad h a=\& c .+A_{r} \frac{\dot{2}}{r} \sin \frac{r a}{2} \cos r \theta+B_{r} \frac{2}{r} \sin \frac{r a}{2} \sin r \theta+\& c$.
whence $h=\& c .+\frac{\sin \frac{r a}{2}}{\frac{r a}{2}} \mathbf{A}_{r} \cos r \theta+\frac{\sin \frac{r a}{2}}{\frac{r a}{2}} \mathbf{B}_{r} \sin r \theta+\& c$.
Consequently the coefficients that express the oscillation which goes through its period r times in 24 I'hours, must be augmented by the
factor $\frac{\frac{r a}{2}}{\sin \frac{r a}{2}}$ to give the true A_{r} and B_{r}.
Remembering that a is 15° and putting for $r, 1,2,3, \& c$., in succession, the augmenting factors for the diurnal, semi-diurnal, terdiurnal oscillation, \&c., become

$$
\frac{7 \cdot 5 \pi}{180 \sin 7^{\circ} 30^{\prime}} ; \quad \frac{15 \pi}{180 \sin 15^{\circ}} ; \quad \frac{22 \cdot 5 \pi}{180 \sin 22^{\circ} 30^{\prime}} ; \& c .
$$

Thus, the augmenting factors are :-

In the reduction of S-series of tides, the numbers treated are the actual' heights of the water exactly at the S -hours, and therefore no augmenting factor is requisite.
55. If now t denotes T-times expressed in hours and n is 15°, the

Determination height h, as expressed by the averaging process explained of A 's and B 's. above, is given by the formula
$h=A_{0}+A_{1} \cos n t+B_{1} \sin n t+A_{2} \cos 2 n t+B_{2} \sin 2 n t+\& c$, where t is $0,1,2 \ldots 23$.
Then, if Σ is the sum of the series of 24 terms found by giving t ite $2 \pm$ values, as before shown,

$$
\mathbf{A}_{0}=\frac{1}{24} \Sigma h ; \mathbf{A}=\frac{1}{1} \Sigma \Sigma h \cos n t ; \mathbf{B}_{1}=\frac{1}{12} \Sigma h \sin n t ;
$$

Chap. I.]
$A_{2}=\frac{1}{12} \Sigma \cos 2 u t ; B_{2}=\frac{1}{12} \Sigma h \sin 2 u t ; \& c ., \& c$.
Also, since $u=15^{\circ}$ and t is an integer, all the cosines and sines involved are equal to one of the following :-0) $\pm \sin 15^{\circ} ; \pm \sin 30^{\circ} ; \pm \sin 45^{\circ}$; $\pm \sin 60^{\circ} ; \pm \sin 75^{\circ} ; \pm 1$. These are denoted in the computation forms by $0, \pm S_{1}, \pm S_{2}, \pm S_{3}, \pm S_{4}, \pm S_{5}, \pm 1$.

This enables the forms to be arranged in the neat tabular form on pases $1, \dot{z}$ and 3 of the Analysis of Short-Period Tides, a specimen of which is given in Form No. V1, where the 24 hourly values to be submitted to analysis are written continuously down columns I and II. 'The subsequent operations are sufficiently indicated by the headings to the columns and it will be found on examination that the results are in reality the sums of the several series given above.

The A's and B's are thus deduced, and then $R=\sqrt{A^{2}+B^{2}}$: it must be multiplied by the augmenting factor, already evaluated, to obtain the augmented R which, when multiplied by $\frac{l}{f}$, gives H. Next the angle whose tangent is $\frac{B}{A}$ grives $\dot{\xi}$, which must be added to the appropriate $V_{0}+u$ to find κ. The form used will be found in the specimen of the reductions: it also serves for the final treatment of the long period tides, except that there is no augmenting factor, and that the increase of n for ll $\frac{1}{2}$ hours has to be added to $\boldsymbol{\xi}$.
56. For the purpose of determining the tides of long period, it is

Long-period tides. necessary to eliminate the oscillations of water-level arising from the tides of short period. As the quickest of the tides of long period has a period of many days, the height of the water at one instant for each day gives sufficient data. 'Ihus there will, in a year's observations, be 365 heights to be submitted to harmonic analysis. In leap-years, the last day's observation must be dropped, because the treatment is adapted for analysing 365 values.

In finding the value of the height of the water for each day, the algebraical mean of 24, consecutive hourly values, beginning with the height at noon, is taken: the result will then apply to the middle instant of the period 0^{h} to 23^{h}, that is to say to $11^{\mathrm{h}} 30^{\mathrm{m}}$ at night.
5). The formation of a daily mean does not obliterate the tidal

Olearance for short-period tides. oscillations of short period, because none of the tides, excepting those of the principal solar series, have commensurable periods in mean solar time.

Chap. I.]
The Tides

A correction, or 'clearance of the daily mean', should therefore be applied for all the important tides of short period, excepting for the solar tides.

Let $\mathrm{R} \cos (n t-\zeta)$ be the expression for one of the tides of short period, as evaluated by the harmonic analysis for the same year: and let \approx be the value of $n t-\xi$ at any noon. Then the 24 consecutive hourly heights of the water due to this tide, beginning with that noon, are :-
$\mathrm{R} \cos a ; \mathrm{R} \cos (n+a) ; \mathrm{R} \cos (2 n+a) . . \mathrm{R} \cos (23 n+a) ;$
 the 'clearance of the daily mean' is $-\frac{1}{2} 1 \mathrm{R}^{2} \frac{\sin 12 n}{\sin \frac{1}{2} n} \cos \left(a+11 \frac{1}{2} n\right)$, and is additive.

It has been found, practically, that only three tides of short period $n i z . M_{2}, \mathrm{~N}, \mathrm{O}$, exercise any appreciable effect, so that clearances for them have to be applied. It was formerly the custom to compute the clearness for these three tides, for every day in the year, as above, and to correct the daily means accordingly : but the procedure now is different, and a single correction, for each short-period tide, is applied to each of the final equations, instead of to each daily mean. The process will be explained more fully below.

The late Professor J. C. Adams suggested an alternative plan in which the tide-predicting machine may be used for the evaluation of the sums of the clearances. It is evident that $\mathrm{R} \cos \left(a+[1] \frac{1}{2} n\right)$ is the height of the tide n at $11^{\mathrm{h}} 30^{\text {mi, }}$, and the same is true for each such tide. Hence if the tide-predicting machine is used to rom off a year of fictitions tides with the semi-range of each tide equal to $\frac{1}{2+5} \frac{\sin }{\sin } \frac{12 n}{\frac{1}{2} n}$ of its true semirange, and with all the solar series and the annual and semi-annual tides put at zero, the height given at each $11^{\mathrm{h}} 30^{\mathrm{m}}$ in the year is the sum for each day of all the clearances to be subtracted.
58. The mean of the 365 quantities is now taken to give the mean height of the water for the year; and it is evident

Uncleared equations. that, even if the daily means are uncleared from the effects of the short-period tides, as is the case in practice, this yearly mean cannot be sensibly vitiated.

The yearly mean height is next subtracted from each of the 310.5 daily means, and 360^{2} quantities, δh, are found giving the mean daily height of the water above the mean yearly height.

These quantities are to be the subject of harmonic analysis: and the tides chosen for evaluation are those which have been denoted above as Mm, Mf, MSf, Sa and Ssa.

Let

$$
\begin{aligned}
\delta l t= & \mathrm{A} \cos (\sigma-\varpi) t+\mathrm{B} \sin (\sigma-\mathrm{w}) t \\
& +\mathrm{C} \cos 2 \sigma t+\mathrm{D} \sin 2 \sigma t \\
& +\mathrm{C}^{\prime} \cos 2(\sigma-\eta) t+\mathrm{D}^{\prime} \sin 2(\sigma-\eta) t \\
& +\mathrm{E} \cos \eta t \quad+\mathrm{F} \sin \eta t \\
& +\mathrm{G} \cos 2 \eta t \quad+\mathrm{H} \sin 2 \eta t,
\end{aligned}
$$

where t is time measured from the first $11^{\text {h }} 30^{w}$.
Then a little manipulation, for which the reader is referred to Professor Darwin's Report of 1883, gives the following equations:-

If the daily means have been cleared by the use of the tide-predicting machine as above described, these ten equations are ready for solution, but if not, then before solution of the final equations, corrections for clearance must be applied to the left hand sides.
59. The left-hand sides of these equations must now be cleared from the effects of the three tides of short period. This mination of clearances. is done in the following manner :-

It has been shown before that the 'clearance' is

$$
-\frac{1}{2} \frac{\mathbf{R}^{2}}{\sin 12 n} \frac{\sin \frac{1}{2} n}{\cos \left(n t-\zeta+11 \frac{1}{2} n\right) .}
$$

The proper clearances therefore to be applied to the left-hand sides of the first and second equations will be :-

$$
\begin{aligned}
& -\frac{1}{24} \Sigma \mathrm{R} \frac{\sin 12 n}{\sin \frac{1}{2} n} \cos \left(n t-\zeta+11 \frac{1}{2} n\right) \cos (\sigma-\varpi) t \\
& -\frac{1}{24} \Sigma \mathrm{R} \frac{\sin 12 n}{\sin \frac{1}{2} n} \cos \left(n t-\zeta+11 \frac{1}{2} n\right) \sin (\sigma-\varpi) t
\end{aligned}
$$

and
the summation extending over 365 days.
Writing $R \cos \zeta=A$ and $R \sin \zeta=B$, Professor Darwin in his report of 1883 has deduced these clearances in the forms

$$
\mathbf{X}_{1} \mathbf{A}+\mathbf{X}_{2} \mathbf{B} \text { and } \mathbf{Y}_{1} \mathbf{A}+\mathbf{Y}_{2} \mathbf{B},
$$

where the X 's apply to the left-hand sides containing a cosine and the Y's to those containing a sine, and the A.'s and B's are taken from the analysis of the corresponding short-period tides. Simple formulæ are also giving for computing the X's and Y's ; their values are shown in the annexed table, and are to be applied with the signs there given :-

	$\begin{aligned} & X_{1} \\ & X_{2} \\ & Y_{1} \\ & Y_{2} \end{aligned}$	σ - ${ }^{\text {d }}$	2σ	$2(\sigma-\eta)$	η	${ }^{2} \eta$
		-0.03557	+0.00.302	+ $5 \cdot 7393$	-0.10410	-0.10465
		-0.17036	-0.0.3773	- 2.9228	-0.07:25	-0.07546
		-0.17075	+0.04170	- 2.8400	-0.00176	-0.00353
		+0.04410	+0.01352	- 5.7271	$+0.00476$	-0.00958
	X_{1}	-0.03884	+0.0.3680	+0.029.38	-0.01760	-0.01760
	X_{2}	-0.77758	-0.22.3.37	-0.19384	+0.00254	+0.00254
	Y_{1}	-0.02059	-0.15245	-0.12210	+0.00020	+0.00041.
	Y_{8}	+0 11.381	-0.08544	-0.08081	+0.00007	+000015
	X_{1}	-0.06485	$+0.016 \% 3$	+0.01582	-0.19240	-0.19340
	X_{2}	-0.34765	-0.07788	-0.081:8	-0.1826o	-0.18311
	Y_{1}	-0.3453	+0.08418	$+0.08748$	-0.00460	-0.00926
	Y_{2}	+0.04052	+ 00.3379	+0.03295	+0.00897	+0.01802

60. As the determination of each of the ten quantities $\Sigma \delta h$ $\cos (\sigma-w) t, \Sigma \delta h \sin (\sigma-w) t$, sce., by multiplying

> Method of 'equi. valent maltipliers. each of the $365 \delta h$'s by its proper cosine or sine andadding the results together, would be extremely laborions, the method of equivalent multipliers has been devised by Professor Adams.

Chap. I.]
'HeORy and Computation

The values of the respective cosines and sines are divided into eleven groups, according as they fall nearest to $1 \cdot 0, \cdot 9, \cdot 8, \cdot 7 \ldots \ldots \ldots \cdot 2, \cdot 1,0$. Then, as all the values of δ / ι are to be multiplied by some value of the cosine or sine, and that value must fall into one of these groups, all the values of $\delta / /$ which belong to one of these groups are collected together, summed and the sum multiplied by the corresponding multiplier. Since there are as many positive as negative values of the cosine or sine, the signs of half of the δh 's must be changed : this is effected mechanically as follows :-In the spaces in the forms for the entry of the $\delta l l s$, those $\delta l l^{\prime} s$ whose signs are to be unchanged are to be entered on the left side of the space if positive, and to the right if negative. Thus, in the column corresponding to each multiplier, there are two sub-columns: these are separately summed and the difference of these sums gives the total of the column for the δh 's whose signs are to be unchanged. This process is carried out in the upper half of the form and the result is called π. Exactly the same course is adopted in the lower half of the form with the δh 's whose signs have to be changed, and the result is denoted by b. The complete sum of the $\delta h h^{\prime} s$ is thus $a-b$, and the value of $a-b$ in each column is multiplied by the multiplier corresponding to that column, when the sum of the products will give the result required. A pair of forms, one for the cosine and the other for the sine series, is of course required for each long-period tide.
61. Having now obtained the 'cleared' values of the left-hand sides of the equations, the left-hand side of the first

Solution of equations. equation is divided by the coefficient of A in that equation, the left-hand side of the second equation by the coefficient of B in that equation and so on, the results being approximate values of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. These are now substituted in the ten equations and the final values of A, B, C, \&c. deduced. But the initial instant of time is the first $11^{\mathrm{h}} 30^{\mathrm{m}}$ in the year, instead of the first noon. Hence, if as before,

$$
\mathbf{R}^{2}=A^{2}+B^{2} \text { and } \tan \zeta_{1}=\frac{B}{A},
$$

then, in order to reduce the results to the normal form in which noon of the first day is the initial instant of time, the increment of the corresponding argument for $1^{1 "} 30^{\prime \prime \prime}$ must be added to ζ_{1} to get ζ. Having thus determined R and ζ, H and κ will be found as before by multiplying R by its proper factor of reduction and by adding to $\boldsymbol{\zeta}$ the initial argument.
62. From the analysis of the observations at any port, one value of H (the mean semi-range) and one value of κ (which

Preparation of data for predıction of tides. may be called the mean epoch) are obtained for each constituent for each year of observation analysed. For the larger tides $M_{2}, S_{2}, K, \& c$., the values obtained are very accordant, but in the smaller tides there are considerable discrepancies from year to year. The means of the values of H and $\boldsymbol{\kappa}$ for each tide are accepted as the best results.

The computations of the R's and ξ 's are carried out in the way described in the account of the reductions of the observations, the only difference being that to find R from H and ζ from κ, the formule $\mathrm{R}=f \mathrm{H}$ and $\zeta=\kappa-\left(V_{0}+u\right)$ are used.

Suppose, now it is required to predict the tide for any open seaport, the values of the R and ζ of the 24 component tides which are to be set on the tide predicting machine, are computed for the 28th December of the year preceding the commencement of prediction. The values of R multiplied by a constant factor give the amplitudes and $\left(360^{\circ}-\zeta\right)$ the phase angles to be set on the tide predicting machine. In the case of a Riverain port the procedure in computing is the same only the computation is limited to 8 component tides riz:- $2 \mathbf{M}_{2} \mathrm{~K}_{1}$, $\mathbf{J}, \mathbf{Q}, \mathrm{P}, \mathrm{M}_{2} \mathrm{~K}_{1}, \mathrm{~S}_{1}, \mathrm{~K}_{1} \& \mathrm{O}$, as only these are set on the machine.
63. It may happen from time to time that the tide-gange breaks down for a few days, from the stoppage of the clock,

Interruption in record. the choking of the tube, or some other accident and that other readings are not taken during the interruption. In this case there will be a hiatus in the values of $\delta /$. Now the whole process employed depends on the existence of 365 continuous values of δh. Unless, therefore, the year's observations are to be sacrificed, this hiatus must be filled. If not more than three or four days observations are wanting, it is best to plot out the values of $\delta / /$ graphically on each side of the hiatus and, filling in the gap with a curve drawn by hand, use the values of δh given by the conjectural curve. If the gap is somewhat longer, several plans might be adopted, for example, if there is another station in the neighbourhood the values of δh for that station might be inserted; or, the values of δh for another part of the year, in which the moon's and sun's declinations are as nearly as possible the same as they were during the gap might be used and, as a matter of fact, these methods have been used. When the hiatus is of considerable length, the preceding methods are inapplicable, and the plan employed is as follows:-The actual δh 's are entered in their proper

Chap. I.]
places; then in the ten final equations all the terms with small coefficients are neglected, and in the terms whose coefficients are approximately $182 \cdot 5$, a coefficient equal to $182 \cdot 5$ diminished by half the number of days of hiatus, is substituted ; the computations are then carried out, as if there was no gap, until the values of R and ξ are obtained for each long-period tide. From these approximate values of \mathbf{R} and ζ, the height of each tide for each day of the gap is computed from the formula $\mathrm{R} \cos (n t-\zeta)$, where t is the number of days since the commencement of the year of observation and n the speed of the particular long-period tide per mean solar day. Thus five heights, above or below mean-water level, are obtained for each day of the gap. 'These five heights are added together and the sum is the missing δh for the particular day. The gap having been thus filled in with computed $\delta /$'s, the whole computation is repeated with the completed series.

Where a break extends over two or three months in the first half of a working year, the observations antecedent to the break in that half-year are rejected, and the date of the working year put forward to the date following the end of the break: but if the break occurs in the second half of the working year, that year is considered to end at the commencement of the break, and to begin 365 days before it. And the year following the break will begin at the end of the break.
64. In entering the heights of the water, read off the diagrams, in

Forms.
the computation forms, various precautions are taken to guard against error. The procedure adopted in regard to these forms will now be explained, in so far as is not self-evident from the forms themselves. The forms given below have for convenience been numbered consecutively from I to XI, but this is not the case in the actual forms.
65. After the diagrams have been prepared, the heights are succes-

Form I, S-Series. sively measured and entered in the respective hour columns of this form, the first entry being that of 0^{h} of the 1 st day. The first day is called 1 in the forms for short-period tides and 0 in those for long-period tides. The date for each day is generally written in pencil on the left-hand margin.

The measurements are made to hundredths of a foot, by means of a paper scale divided into tenths and hundredths in accordance with the working scale of the instrument which registered the diagram under treatment. When the reader has called out the entry for each 23 rd hour, the recorder checks the record by calling out 'end of the day' and then gives the date of the next day.

The reading and entry of the heights in the S-Series is done in duplicate, the original set being generally measured by one, and the duplicate by another computer. While the measurement for the duplicate is going on, the first computer watches the entries in the original and if the reading differs by more than $0 \cdot 01,0.03$ or 0.05 of a foot according as it is the natural, half or smaller scale, that height is at once remeasured and a correct value entered both in the original and the duplicate. The original and duplicate are now compared, and if there are any discrepancies larger than those above mentioned, they are noted, remeasured at the completion of the comparison, and correct values entered in both copies.
06. The heights are next copied from the original of the S-Series Form II. sc. M, into the M-Series, from the M-Series into the \&c.. Series. the last being now the 2MK-Series.

Where a double dot occurs in the forms, it indicates that two successive hourly values of the S-Series are to be entered, the first above the second : when a horizontal line takes the place of one of the usual dots, it means that no entry is to be made there, but that the next entry is to be in the next column to the right.

A black vertical line means that the solar day divides at the line and that the height immediately preceding corresponds to a 23 rd solar hour. A double dot with a short black vertical line opposite the upper one, means that the entry made at the upper dot is the height corresponding to the 23rd hour of one solar day, and that at the lower dot to the 0 hour of the next solar day. By these marks, the copyist knows that he is at the end of a mean solar day.

At the right-hand side of all the forms, except the S-form, is a column headed S-hour giving the day and hour of the S-Series corresponding to the 23 rd hour of the particular day of the series in question. This is a further check but is rarely used.
67. When the 2MK-Series has been copied from the MK.Series, Comparison of it is compared simultaneously with the original and entries. duplicate of the S-Series, and if it agrees with the original the copying is perfect. The comparison with the duplicate guards against gross errors which may have escaped notice in the comparison of the original and duplicate.

Errors found in the 2MK-Series are searched for in the other series in the reverse order until an entry is reached in which the error does not occur, and corrections are made accordingly.
68. The heights in each column are then added together, the

Addition of hoarly heights. units, tens and hundreds being separately summed, Some weeks afterwards they are verified by fresh computers.

Besides this, for the S-Series, the sum of the 24 hourly heights is taken for each day and entered in the column 'daily sum,' which, divided by 24, gives the quantity in the column 'daily mean.'
69. For the S-Series the total of the 'daily sums' should be equal

Checks to the total of the horizontal line at the bottom of the page in each of the five pages of the form.
For the other series, for example the M-Series, the total of the heights on page 1 of M should be the total of the heights on page 1 of S, less the sum of the last 12 hours on page 1 of S , since the last entry on page l of M corresponds to $74^{\mathrm{d}} 1 \mathrm{l}^{\text {n }}$ of S . In comparing the totals after the first page, account must be taken of the number of entries in excess or defect at the beginning as well as at the end of each page, as compared with the entries on the corresponding page of \mathbf{S}.
70. This requires no explanation ; but care must be taken that the number of observations is correct: it should be the

Form V. Summations and means. sum of the five quantities, one on each page, at the bottom of the page under the corresponding hour.
The remainder of the forms for short-period tides are self-explanatory.
71. The mean height of the water for each day is taken from the Form Ix. Long. column 'daily means' in the S-Series, and the mean period tides. height of the water for the whole year, or A_{0}, is determined in the form for the S-Series which corresponds to Form VI. The latter mean is subtracted from each of the former quantities, giving a number of small positive and negative quantities δ / h, one for each day. These are entered in Form IX, of which there are two for each longperiod tide, in the manner described in the foot-note.
72. In solving the first equation, the second line is obtained by Form XI. introducing for B, C, D, etc., the first approximate values obtained in the preceding form. In solving the second equation, the second approximate value of A is introduced and the first of the other quantities, C, D, etc., and so on.

The manner of carrying out the remaining computations is sufficiently evident from an inspection of the forms given below.

Ohap. I.]
The Tides

Chap. I.]
'I'heory and Computation
[KARACHI, 1883-84.
SHORT-PERIOD TIDES.
Form II.-Series M.

Chap. I.]
The Tides

[KARACHI, 1883-84
To

Commencing 0 hours.
Argument $(\boldsymbol{\gamma}+\boldsymbol{\delta}-\boldsymbol{\sigma})$.
Astronomical time, 1st May. 1883.

The Tides

GHORT-PERIOD TIDES. [KARACHI, 1883-84.												
Form V. Summationb and Means of Series M.												
	${ }^{\text {d }}$	$\mathbf{1}^{\text {b }}$	$2^{\text {b }}$	$3^{\text {b }}$	4	5^{4}	64	$7{ }^{\text {b }}$	$8^{\text {b }}$	$9^{\text {b }}$	$10^{\text {b }}$	$13^{\text {b }}$
Sum (p. i)	$3^{81{ }^{1}{ }^{34}}$	47.11		641.73	$700 \cdot 00$	$735 \cdot 57$	722.91	$647 \cdot 44$	$565 \cdot 07$	456.26	375.65	${ }^{330} 069$
	3+3.74	438.05	536.66	615.67 596.08	$695.1+$ 681.28 1	${ }_{7}^{721 \cdot 19}$	699.40 709.65		544.08	${ }_{459}^{44 \cdot 65}$		
$\because \quad$ (p. 3)	-345.81	419.59 435 45.23	503.63 536.65	- $\begin{gathered}596 \cdot 08 \\ 693\end{gathered}$	\%81.28 691.73	${ }_{7}^{718 \cdot 74}$	709.65 711.59	$634 \cdot 70$ 651.35	$545^{.9} 9$ 553.59	459.52 4515	$385 \cdot 9$ 366.11	$3+5 \cdot 39$ $324 \cdot 73$
	$364 \cdot 14$ $353 \cdot 49$	43.23 +23		633.80 625	69097 6907	$\underset{724 \cdot 24}{ }$	714.22	631.25	539.98	$433 \cdot 03$	$358 \cdot 82$	${ }^{318} 28$
				3111-37	3458022	$3630 \cdot 16$	35577	3205•88	$2748 \cdot 62$	$2243 \cdot 61$	1854.95	1651-25
No. of Obs.	369	369	371	370	369	368	369	369	372	368	369	369
Meens	$4 \cdot 847$	5.835	$2 \cdot 150$	8.409	$9 \cdot 372$	9.865	9.642	8.688	$7 \cdot 389$	6.094	5.027	$4 \cdot 475$
${ }^{13^{\text {b }}}$	$13^{\text {b }}$	$14^{\text {b }}$	$15^{\text {b }}$	${ }^{16^{6}}$	${ }^{17}{ }^{\text {h }}$	${ }^{18}{ }^{\text {b }}$	$19^{\text {b }}$	$20^{\text {b }}$	$25^{\text {h }}$	$22^{\text {b }}$	${ }^{2} 3^{\text {b }}$	
347.89	435.92			$673 \cdot 81$ $680 \cdot 90$	$739 \cdot 51$ 709.83	$728 \cdot 38$ 697.31		575.35 532.87	$489 \cdot 01$ $43 \cdot 23$	${ }^{463.65}$	$366 \cdot 47$ $330 \cdot 4$	$13082 \cdot 24$ $12612 \cdot 10$
$345 \cdot 45$ 360.08	${ }_{4}+12.98$	-	- $599 \cdot 31$	680.90 657.23	- 693.69	$687 \cdot 1$ $676 \cdot 94$	634.3i	${ }_{528.24}$	+ ${ }_{4}^{434 \cdot 23}$	363.64 $354 \cdot 08$	330.4 32000 3	12525.30
351.46	+17.95	¢ 512.74		$695 \cdot 54$ $660 \cdot 43$	$736 \cdot 54$ $706 \cdot 30$		$660 \cdot 95$ $627 \cdot 34$	$570 \cdot 73$ 541.38	$483 \cdot 95$ $443 \cdot 44$	394.27 362.66	$345 \cdot 06$ 328.93	12956.09 $12538 \cdot 47$
$330 \cdot 04$	$400 \cdot 4$	503.91	$591 \cdot 91$									
1734.92	2079.25	2559.65	$2996 \cdot 30$	3367.90	3583.87	3537.91	$3206 \cdot 15$	$2748 \cdot 57$	$2274 \cdot 60$	1878.30	1691-51	$63714 \cdot 20$
370	369	371	368	368	369	369	368	369	369	368	369	
4.689	5.635	6.899	8.142	9.152	9.712	9•588	8.712	7•449	6. 164	5. 104	$4 \cdot 584$	

Chap. I.]
Theory and Computation
SHORT-PERIOD TIDES.
Form VI. analysis of Series M.

[KARACHI, 1883-84.
Form VIII.-Evalcation of Short-Period Tides. Seribs M.
02602.1...8g ${ }^{\text {‘8 }} \mathrm{V}$ z!
$\log B_{8}=+6 \cdot 00000$

\circ
0
0
0
\vdots

 $\log B_{6}=+8 \cdot 3909 t$
$A_{6}=-8 \cdot 63043$ L. $\tan \zeta_{6}=-9 \cdot 760,1$
$\begin{aligned} C_{6} & =150 \cdot \circ \\ +u & =\underline{56 \cdot 154} \\ \kappa_{6} & =\underline{206 \cdot 207}\end{aligned}$

$\left|\begin{array}{c}\infty \\ \underset{\sim}{+} \\ \underset{\sim}{0} \\ \vdots\end{array}\right|$

$A_{4}, B_{4} \ldots$
$\log B_{3}=+8 \cdot 28 \mathbf{5 5 6} \quad \log B_{4}=+8 \cdot \mathbf{5 2 6 3 4}$ $\log A_{4}=\frac{-7.7075^{8}}{0.818-7}$
L. $\tan \zeta_{4}=-0.81877$
$\begin{array}{r}98 \cdot 6.31 \\ 277 \cdot 4.36 \\ \hline 16 \cdot 067 \\ \hline\end{array}$

思
faq paspduon
SHORT•PERIOD TIDES.
Augmentin! Factor:.-For $A_{1}, \mathrm{~B}_{1} \ldots 1 \cdot 00286$,
$\log B_{2}=+0.04052$
$\log A_{2}=-0.37612$
L. $\tan \zeta_{2}=-0.06+40$
$155 \cdot 215$
$1.78 \cdot 78$
$\begin{aligned} \zeta_{3} & =1.39 .124 \\ \Gamma_{0}+u & =208 \quad 077 \\ \kappa_{3} & =\underline{347 \cdot 201}\end{aligned}$
$\begin{aligned} \zeta_{3} & =1.39 \cdot 124 \\ \Gamma_{0}+u & =208077 \\ \kappa_{3} & =\underline{347 \cdot 201}\end{aligned}$
N

0
0
0
0

L. $\tan \zeta_{3}=-0.93 ; 26$

| | 0 |
| :--- | :--- | :--- |
| | 0 |
| 0 | |
| 0 | |
| 0 | |
| 0 | |
| 0 | |
| 0 | |$|$

,
.

∞	-			
∞	0	∞	0	
0	0	0		
0	0	0	0	0
i		i	0	\vdots

Checked by
[KARACHI. 1883-84.

$\mathbf{\Sigma}(a-b) \times$ Nult. $=+5 \cdot 37 . \quad \Sigma(a-b) \times$ Mult. $=-1 \cdot 57 . \quad \Sigma d h \sin (\sigma-\varpi) t=\sum_{364}(a-b) \times \mathrm{Mult} .=+3.80$.

$2 d h \sin (\sigma-\boldsymbol{m})$

Cgap. I.]

Theory and Computation

LONG-PERIOD TIDES.
[KARACHI, 1883-84.
form X.-Summations and Evaldation of Long-Period Tideg.-Clearance from Eftects of Tides of Short-Period.

Note.-A and B to be extracted from harmonic analyais for Tides of Shert-Period.

$$
\begin{aligned}
& \text { Total }+=+0.29 \\
& \text { Total - }=-0.24 \\
& \text { Total clearance }= \pm 0.05 \\
& \text { Uncleared } \Sigma d h \cos (\sigma-\sigma) t=+1.29 \\
& \Sigma d h \cos (\sigma-\boldsymbol{\sigma}) t=+1 \cdot 34 \\
& \text { Divisor 183.05. lst approx. } A=+0.007
\end{aligned}
$$

$$
\begin{aligned}
& \text { Total }+=+0.66 \\
& \text { Total }=-0.02
\end{aligned}
$$

Total clearance $=+0.64$ Uncleared $\Sigma d h \sin (\sigma-\sigma) t=+3 \cdot 80$

$$
\Sigma d h \sin (\sigma-\pi) t=+4.44
$$

Divisor 18:-95. lat approx. B. $=+0.024$

Tide Mf or 2σ.

Total $+=+0.03$
Total $-=-0.19$

Total clearance $=-0.16$ Uncleared $\Sigma d h \cos 2 \sigma t=+\eta \cdot 10$
$\Sigma d h \cos 2 \sigma t=+6 \cdot 94$

Divisor 183.18. 1st approx $C=+0.38$

Sine Series.	Products.
$\mathrm{A}_{2}=-2.378$	
multiplier $=+0.0417$	
$\mathrm{B}_{2}=+1 \cdot 098$	
multiplier $=+0.0105$	
$A=-0.035$	$=+0 \cdot 01$
multiplier $=-0.1525$	$=+0 \cdot 01$
13 $=+0.598$	
multiplier $=-0.0454$	$=-0.05$
$\mathrm{A}=-0.382$	
multiplier $=+0.0842$	-0.03
B $=-0.405$	
multiplier $=+0.033^{8}$	- 1

Total $+=+0.02$
Total - $=-0.19$
'T otal clearance $=-0.17$
Uncleared $\Sigma d h$ sin $\boldsymbol{s} \sigma t=+2 \cdot 14$
$\Sigma d h \sin 2 \sigma t=+1 \cdot 97$

Divisor 181.82. st approx. $\quad D=+0.011$

The ist approximations of the constants for other three tides are deduced in the same way, and are for MSf. $C^{\prime}=-0.001, D^{\prime}=-0.009$; for $S_{a}, E=+0.089, F=-0.001$; and for Bea, $G=-0.003$, $\mathbf{H}=+0.180$.
LONG.PERIOD TIDES.
[KARACHI, 1883-84.

Chap. I.]
Theory and Computation
Correction to the tidal pamphlet, 'The Tides.' (1926).

Chapter I, Page 61, para 84 -
Substitute the words "Chapter I" for the words "the book" in line 1 .

Geod. Er. P.O.-1926-310.
86. 'Ihis table is the converse of Table l, but had to be made out

Table II. somewhat differently. The correct value to three places of decimals of a degree is all that is generally required in the computations. This is given in the 4th column, and it will be observed that the figures in the 4th column are arranged midway between those in the 3 rd and also midway between those in the 5 th column, where the actual values corresponding to the angles in the 3rd column are given.

It will also be observed that the table is divided into six groups. The reason of this is as follows :-6 minutes $=\cdot 1$ of a degree, 12 minutes $=\cdot 2,18$ minutes $=\cdot 3$, and so on. Therefore, any number of seconds added to 6 minutes will give the same figures in the second and third place of decimals, (in the equivalent value of a degree expressed in decimals), as the similar number of seconds added to 12 minutes or 18 minutes would give. Similarly, 1 minute, or 7 minutes, or 13 minutes, and so many seconds would each have for the second and third place of decimals, the same figures in expressing their corresponding values in decimals of a degree; (the first figure of the decimals of course alters).

To use the table, first look for the minutes in one of the groups of column l; opposite it in the 2nd column will be found the first figure of the equivalent value in decimals of a degree. Keeping to the same group, look in the 3rd column for the seconds, (most probably - the exact number will not be found), entering this column at the space between the number of seconds next less, and the number of seconds next greater than that looked for, in the 4th column opposite this space the second and third figures of the corresponding value of the decimals of a degree will be found. If the actual number of seconds looked for is found in the third column, then the corresponding value is obtained in column 4 opposite the space in column 3 below the number of seconds.
84. The tables at the end of the book have been constructed to facilitate the computation required for the harmonic analysis of the tidal observations and for the preparation of data for tidal prediction. The following explanations and examples are given to illustrate the use of the tables.
85. This table, for converting decimals of a degree into their cor-

Table I. responding values of minutes and seconds of are, enters frequently into the computations, more especially in taking out the values of the trigonometrical functions from Shortrede's Logarithm tables. Its use hardly requires explanation.
86. This table is the converse of Table 1 , but had to be made out

Table II. somewhat differently. The correct value to three places of decimals of a degree is all that is generally required in the computations. This is given in the 4th column, and it will be observed that the figures in the 4th column are arranged midway between those in the 3rd and also midway between those in the 5th column, where the actual values corresponding to the angles in the 3rd column are given.

It will also be observed that the table is divided into six groups. The reason of this is as follows :-6 minutes $=\cdot 1$ of a degree, 12 minutes $=\cdot 2,18$ minutes $=\cdot 3$, and so on. Therefore, any number of seconds added to 6 minutes will give the same figures in the second and third place of decimals, (in the equivalent value of a degree expressed in decimals), as the similar number of seconds added to 12 minutes or 18 minutes would give. Similarly, 1 minute, or 7 minutes, or 13 minutes, and so many seconds would each have for the second and third place of decimals, the same figures in expressing their corresponding values in decimals of a degree; (the first figure of the decimals of course alters).

To use the table, first look for the minutes in one of the groups of column 1; opposite it in the 2nd column will be found the first figure of the equivalent value in decimals of a degree. Keeping to the same gronp, look in the 3rd column for the seconds, (most probably - the exact number will not be found), entering this column at the space between the number of seconds next less, and the number of seconds next greater than that looked for, in the 4th column opposite this space the second and third figures of the corresponding value of the decimals of a degree will be found. If the actual number of seconds looked for is found in the third column, then the corresponding value is obtained in column 4 opposite the space in column 3 below the number of seconds.

Chap. I.]
The Tides

Example.-Required the decimals of a degree corresponding to 18' 25":--.

Again :-If the decimals of a degree corresponding to $40^{\prime} 0^{\prime \prime}$ are required: then as in the above example, $40^{\prime} 3^{\prime \prime}$ would just equal $\cdot 668$, and anything less than $40^{\prime} 3^{\prime \prime}$ must be less than .668. Again, $39^{\prime} 59^{\prime \prime} \cdot 4$ would just equal $\cdot 667$, and anything greater than $39^{\prime} 59^{\prime \prime} \cdot 4$ must be equal to $\cdot 667$ or more. Therefore $40^{\prime} 0^{\prime \prime}$ would equal $\cdot 667$.
87. This is extracted and deduced from Hansen's Tables de la

Table III. Lune, pages 299 and 300 up to the year 1923. The values of p_{0} the mean longitude of the moon's perigee, (or π as it is written in the tidal computation forms), is given for what is called January 0 of each year; but in the preface to Hansen's Tables it will be found that January () and December the 31st mean the same date; therefore the values given in the tables are for 0 hours December 31st of the preceding year. But this is not the case for leap-year ; the values given in the tables as regards those years are for 0 hours January lst.

If the value of π for 0 hours January lst is required for any year which is not a leap-year, take the value of π given opposite in the next column, and add one day's motion (Table V) ; if it is a leap-year, the one day's motion has not to be added.

Example.-Required p_{0} or π for 0 hours January lst, 1891. In Table III opposite 1891 - . . $328^{\circ} 00632$
In Table V one day's motion for $\pi \quad 0 \cdot 11140$
p_{0} or π for 0 hours January lst, $1891=328^{\circ} \cdot 11772$
Again :-Required p_{0} or π for 0 hours January lst, 1892.
Opposite 1892 in Table III is $8^{\circ} \cdot 78020$, which is the value required, for 1892 being leap-year, the one day's motion is not added.

Since the year 1923 the value of p_{0} or π, the mean longitude of the . moon's perigee, given in the Nautical Almanac is derived from the formula in Brown's tables instead of from the older formula given in Hansen's tables which was in use prior to that date and from which the values of p given in G. T. Survey Vol. 16 were obtained :-vide Vol. 16 pp $61 \& 317$ part I.

The formula in use since 1023 is:-

Char. I.]
Theory and Compu'tation
$334^{\circ} 19^{\prime} 46^{\prime \prime} \cdot 40+4069^{\circ} 2^{\prime} 2^{\prime \prime} \cdot 52 \mathrm{~T}-37^{\prime \prime} \cdot 17 \mathrm{~T}^{2}-0^{\prime \prime} \cdot 045 \mathrm{~T}^{3}$, where T is the time expressed in terms of a Julian century of 36525 mean solar days elapsed since midnight at Greenwich on Jan. 0-1 1900, which is taken as the origin of time.

The speed of p_{0} is $0^{\circ} \cdot 11140408031$ per mean solar day, so that for simplicity the first 2 terms of the formula above may be written :- .
$334^{\circ} .329556-0^{\circ} \cdot 11140408031 \times$ No. of days.
An example of the computation is given below-
Required p_{0} or π the mean longitude of the moon's perigee for 0 hours on Jan. 1, 1923.

$$
\text { Absolute term } \quad 334 \cdot 3295 \pm 6
$$

Motion for 8401 days at $0^{\circ} \cdot 11140408031$

$$
=935^{\circ} \cdot 905679
$$

$$
-37 \cdot 17 \mathrm{~T}^{2}-0.045 \mathrm{~T}^{3} \text { for } \mathrm{T}=\cdot 23
$$

$$
\therefore p_{0} \text { or } \pi
$$

$$
\begin{aligned}
& \text { or } \begin{array}{l}
\frac{215 \cdot 905679}{\overline{550.235235}} \\
\text { or } \\
=\frac{-\cdot 000546}{\overline{190 \cdot 245235}} \\
= \\
=190^{\circ} \cdot 234689
\end{array}
\end{aligned}
$$

or $190^{\circ} \cdot 2347$ as given in the Nautical Almanac.
The values from 1924 onwards depend on the new formula above. They are shown in italics in table III.

The values for Jan. 1 computed by the new formula were found in defect of those published in the old edition of the table after addition of • 136 and one day's motion at • 11404 to convert the latter to Jan. 1 instead of Jan. 0 by :-

$$
\begin{array}{r}
\cdot 00159 \text { in } 1923 \\
\cdot \\
\cdot 00324 \text { in } 1936 \\
\cdot 00608 \text { in } 1949
\end{array}
$$

The tabular values for Jan. 0 from 1924 onwards were accordingly corrected by interpolation from the above, and still require the constant $0 \cdot 136$ added.

These values may be also obtained from the N. Almanac, which is usually available in time for any particular year's computations.
88. These tables are to be employed together ; in using Table V

> Tables IV and V. great care must be taken that the proper number of days from January 0 is taken by means of Table IV. The motion of p_{0} or π is given for every day from 1 to 366 .
89. This table gives the correction to the value of p_{0} or π on Jablo VI. account of difference of longitude from Greenwich. The correction is required only to three places of decimals of a degree, as far as the tidal computations are concerned, and the table is constructed on the principle explained in Table II.

Column 3 shows the exact correction for the difference of longitude given immediately opposite in column 1; and column 2 gives the correction which has to be used, for all values occurring between the longitudes given in column 1 .

Example.- Required correction for p_{0} or π for $30^{\circ} 30^{\prime}$ E. longitude. By table II $30^{\prime}=\cdot 500$ of a degree.

From Table VI.- $30^{\circ} \cdot 500$ lies between $27^{\circ} \cdot 468$ and $30^{\circ} \cdot 700$ in column 1, and in column 2, opposite the space between those two longitudes is • 009 , which is the correction required, and the sign is-.

90 . This table will be found much more convenient than Crelle's for the particular multiplications required, and
'Table VII. admits of much more rapid computation. The three augmenting factors $\mathrm{R}_{3}, \mathrm{R}_{6}$, and R_{8} occur so seldom, that it has not been thought necessary to extend the tables on their account.

The usual multiples of the factors are one integer and three places of decimals, or two figures only preceded by 0 ; for instance, $1 \cdot 412$, or $0 \cdot 026$. Sometimes, however, two integers and three places of decimals have to be multiplied by the augmenting factor. The use of the table hardly requires explanation, care being taken to put down the decimal point correctly. The values in the tables are the products of the factors by whole numbers.
91. These tables require no explanation. They give the value of S_{1}, S_{3}, S_{4}, and S_{5} multiplied by every number

Tables VIII, IX, X, and XI. between $\cdot 001$ and $\cdot 999$: from which the products of these factors with other numbers can be rapidly obtained, care being taken about the decimal point.
92. This table has been made up in order to permit of the Table XII. natural numbers corresponding to logarithms, with indices 6,7 , and 8 , being taken out much more rapidly than could be done with Hutton's Logarithm Tables. The natural number corresponding to the given logarithm is only required correct to three places of decimals. The table has been made up on the same principle as explained in the case of Table II.
93. This table gives the values of N, (longitude of moon's ascending node), for 0 hour January 1, Greenwich
Table XIII. mean time, for each year from 1850 up to 1949.
Since the year 1924 the value of N, as given in the Nautical Almanac, is derived from the formula in Brown's tables, instead of from the older formula given in Hansen's tables, which was in use prior to that date, and from which the values of N given in G. T. Survey

Vol. 16 were obtained :-vide Vol. 16 pp .61 and 324 part 1.
The formula in use since 1924 is :$259^{\circ} 10^{\prime} 59^{\prime \prime} \cdot 79-1934^{\circ} 8^{\prime} 31^{\prime \prime} \cdot 23 \mathrm{~T}+7^{\prime \prime} \cdot 48 \mathrm{~T}^{2}+0^{\prime \prime} \cdot 008 \mathrm{~T}^{3}$, where \mathbf{T} is the time expressed in terms of a Julian century of 36525 mean solar days elapsed since midnight at Greenwich on Jan. 0-1, 1900, which is taken as the origin of time.

The speed of N per mean solar day is $0^{\circ} .05295392220$ so that for simplicity the first two terms of formula (1) may be written $259^{\circ} \cdot 183275-0^{\circ} \cdot 05295392220 \times$ No. of days.

An example of the computation is given below:-
Required the mean longitude of the Moon's ascending node for 0 hours on Jan. 11928.
 or $174^{\circ} \cdot 3175$ as given in the Nautical Almanac.
The tabular values from 1924 onwards depend on the new formula above. They are shown in italics in Table XIII. The values for January 1 computed by the new formula were in excess of those published in the old edition of the table by :-
-0034 in 1923

- 0042 in 1949

The old values were corrected accordingly by interpolation from 1924 onwards.

The values may also be obtained from the N . Almanac, which will usually be available in time for any particular year's computations.
94. This table shows the amount to be subtracted from the values

Table XIV. given in Table XIII, to obtain N at any particular date. The mean value of N to be used in the tidal reductions is the value at mid-year of the observations : and as half a_{b} year after 0 hour of the first day under analysis falls at midnight, the values in Table XIV are computed for each midnight.
95. This table gives the value of p_{1}, the solar perigee, for 0 hour

Table XV.
January l, from 1850 to 1949 .
The formula for p_{1}, the mean longitude of the solar perigee, given in the Nautical Almanac for 1917 p. 590 , is derived from the formula given in Newcomb's tables.

The formula is $p_{1}=281^{\circ} \cdot 1315^{\prime \prime} \cdot 0+6189^{\prime \prime} \cdot 03 \mathbf{T}+1^{\prime \prime} \cdot 63$ $\mathrm{T}^{2}+0.012 \mathrm{~T}^{3}$ where T has the same significance as above.

The first two terms may be written for simplicity $281^{\circ} \cdot 220833+$ $0^{0} \cdot 00004706845 \times$ No. of days.

An example of computation is given below :-
Required p_{1} the mean longitude of the solar perigee for 0 hrs . Jan. 1. 1923.

$$
\begin{array}{lcr}
\text { Absolute term } \ldots & \ldots & 281^{\circ} \cdot 220833 \\
\text { Motion for } 8401 & \text { days at } 0^{\circ} \cdot 00004706845 \ldots= & =395422 \\
1^{\prime \prime} \cdot 63 \mathrm{~T}^{2}+0^{\prime \prime} \cdot 012 \mathrm{~T}^{3} \text { for } \mathrm{T} \text { at } \cdot 23 \ldots & \ldots= & =000024 \\
\therefore p_{1} & \ldots & \ldots
\end{array}
$$

The tabular values from 1924 onwards depend on the new formula above. They are shown in italics in Table $X V$.

The values for January lst computed by the new formula were in excess of those published in the old Edition of the table by:-

$$
\cdot 0055 \text { in } 1923
$$

- 0064 in 1936
- 0075 in 1949

The old values were corrected accordingly by interpolation from 1924 onwards.

These values may also be obtained from the N. Almanac which will usually be available in time for any particular year's computations.
96. This table shows the increment to be added to the quantities given in Table XV to obtain the value on certain days of the year, as the value of the solar perigee (p_{1}) is required for mid-year of the observations.
97. This table gives the values of I, (inclination of the lunar orbit

Table XVII. to the equator), ν, (the right ascension of the intersection of the lunar orbit and the equator), and ξ, (the longitude ' in the moon's orbit' of the intersection), corresponding to each half degree of N, (the longitude of the moon's ascending node), from 0° up to 180°.

When N is negative, I has the same value as when N is positive; but ν and ξ change sign with N.

The values of I, ν and ξ, corresponding to N at mid-year, will be easily found by interpolation between the two nearest half degrees.
98. This table is subdivided into seven parts (1), (2), \&c., and is

Table XVIII. used for the determination of the factors $1 / f$ and f required in calculating H from R and vice versd.

Omap. 1.]

The values are given corresponding to each $0^{\circ} .1$ of I, the inclination of the lunar orbit to the equator. The values required in the computation are those corresponding to I for mid-year ; so that I is first obtained from Table XVII to correspond to N at mid-year, and then the $1 / f$ or f will be easily calculated by interpolation from the particular part of this table.
99. This table gives the values of ν^{\prime} corresponding to each $0^{\circ} \cdot 1$ Table XIX. of I. The ν ' is required in computing the values of $h_{0}-\nu^{\prime}-\frac{1}{2} \pi$, the initial argument for the tide K_{1}.
100. This table is similar to Table XIX, and gives the value

Table XX. of $2 \nu^{\prime \prime}$ employed in determining the initial argument, $2 h_{0}-2 \nu^{\prime \prime}$, for the tide K_{2}.
Attention should be paid to the notes at the foot of these tables.
101. Harmonic analysis has been discontinued at all ports except Basrah on the advice of Dr. A. T. Doodson and

> Harmonic anaiysis discontinued Prof H. Lamb. Observations were continued at the minor ports for only 5 years or less; at the larger ports observations extended over longer periods. At the following working ports observations still continue merely for purposes of local investigation and check on predictions :-Aden, Karachi, Bombay (Apollo Bandar and Prince's Dock), Madras, Calcutta (Kidderpore), Rangoon and Moulmein. In addition tidal observations are being carried out at Basrah with a view to harmonic analysis.

The preparation of data for tidal prediction.

102. The result of the harmonic analysis has been the dissection of the aggregate tidal wave,and it gives the tidal constants for each separate constituent tide for each port.

To carry out prediction, it is necessary to carry out the synthesis of these constituent tides and recompound them in their proper relative positions in relation to the position of the moon and sun at the moment chosen, for the commencement of prediction at the port in question, and to obtain the amplitudes and phase angles to be set on the tide-predicting machine at the commencement of the predictions.

From the harmonic analyses, the values of κ and H have been obtained year by year for each tide for each port, and the mean values extracted after a long period of observations, varying from about 5 to 45 years in the case of some of the ports.

As these average values are now adopted, these values of κ and \mathbf{H} are entered in form 17 Tid for each of the separate tides to be set on
the tidal machine for each port. The values of $\left(V_{0}+u\right)$ and f however have now to be determined for the actual year of prediction.
103. The method of procedure is best illustrated by a sample of the computations for the data for tidal prediction for the tide-tables for 1923.

COMPUTATIONS FOR DATA FOR 1923 TIDE-TABLES.
Year begins 0 hour (noon) 28th December 1922, and is equal to 365 days.
Midyear $=$ midnight 28th-29th June 1923. (In case of a leap year mid-year would fall at noon 28th Jnne.)
N. (Longitade of moon's ascending node.)
Table 13 for 0 hour (noon) 1st Janaary $1923=174^{\circ} \cdot 3141$
Table 14 December ap to midnight 28th-29th Jane $1923=\frac{-9 \cdot 4523}{164 \cdot 8618}$
or $164^{3} \cdot 869$ for Greenwich
I. (Inclination of the lanar orbit to the equator.)

Table 17 for $164^{\circ} \cdot 5=18^{\circ} \cdot 54 \downarrow$ and $165^{\circ} \cdot 0=18^{\circ} .529$ Diff. for $0^{\circ} .5=-0^{\circ} .015$ for Diff. - 0367 to $\cdot 0377$ (see varions values of N on page 211)
$=18^{\circ} \cdot 544-0^{\circ} .011$
$=18^{\circ} \cdot 533$ for all ports
ν. (Right Ascension of the intersection of the lunar orbit and the equator.)
Table 17 for $164^{\circ} \cdot 5=4^{\circ} \cdot 323$
and for $165 \cdot 0=4 \cdot 190$
Diff. for $0 . \overline{5}=-0.133$
Corrections corresponding to differences varying

from 0.367 to 0.370	$=-0.098$	ν corresponding	$=4.225$	
0.371 to 0.374	$=-0.099$	$"$	$=4.224$	
$"$,	0.375 to 0.377	$=-0.100$		$=4.223$

$\varsigma . ~(L o n g i t u d e$ in the moon's orbit of the intersection.)
Table 17 for $16 t^{\circ} \cdot 5=4^{\circ} \cdot 040$
, $165 \cdot 0=3 \cdot 916$
Diff , $\quad 0 . \overline{0}=-\overline{0.124}$
Corrections corresponding to differences varying

from 0.367 to 0.368	$=-0.091$	ζ corresponding	$=3 \cdot 9.949$
0.370 to 0.372	$=-0.092$		$=3.949$
0.373 to 0.377	$=-0.093$	\because,	$=3.947$

ν for determining ($h_{0}-\nu^{\prime}-\frac{1}{} \pi$), the initial argament for tide $\mathrm{K}_{\text {, }}$
Table 19 for $18^{\circ} \cdot 5=2^{0} \cdot 515$
, $18 \cdot 6=3 \cdot 049$
Diff. $\quad .1=0.534$ and for $0.033=0.176$
Hence for $15 \cdot 533=2 \cdot 691$ for nll ports.
$2 \nu^{\prime \prime}$ for determining ($2 \mathrm{~h}_{0}-2 \nu^{\prime \prime}$), the initial argnment for tide K_{v}.
Table 20 for $18^{\circ} \cdot 5=4^{2} \cdot 548$
Diff. " $\quad \frac{18.6=5.531}{0.1=0.98}$
$0 \cdot 033=0.324$
Hence for $18^{\circ} \cdot 533=4^{\circ} \cdot 872$ for all ports.

Theory and Computation

COMPUTATIONS FOR DATA FOR 1923 TIDE．TABLES．

	Ports	N			I	ν	ζ	ν^{\prime}	$2 \nu^{\prime \prime}$
No．		$\begin{gathered} \text { For } \\ \text { Green- } \\ \text { wich } \end{gathered}$	$\begin{gathered} \text { E. } \\ \text { Long. } \\ \text { Corr. } \end{gathered}$	For Port					
			＋		＋	＋	＋	＋	＋
1	Suez ．．．	164．862	$0^{\circ} \cdot 005$	164．867		$4^{\circ} \cdot 225$	$3^{\circ} \cdot 949$		
2	Perim ．．．	＂	0.006	－ 868		＂	＂		
3	Aden	＂	0．007	－869		．，			
4	Maskat	＂	0.009	－871		＇，	3．948		
5	Bushire	，	0.007	869			$3 \cdot 949$		
6	Karachi	＂	0.010	－ 872		4． 224	3．948		
7	Okha ．．．	＂	＂	＂		＂	＂		
8	Porbandar ．．．	＂	＂	，		＂	＂		
9	Port Albert Victor	＂	0.011	－ 873		＂	＂		
10	Bharnagar ．．．	＂	，	＂		，	＂		
11	Bombay（A．B）．．．	＂	＂	＂		，	，		
12	Do．（Prince＇s $\begin{gathered}\text { Dock）}\end{gathered}$	＂	＂，	＂		，	，		
13	Marmagao ．．．	＂	＂	＂		\cdots	＂		
14	Karwar ．．．	＂	＂	＂		，	，		
15	Beypore ．．．	＂	，	，		．．	＂		
16	Cochin	＂	，	\because		＂	＂		
17	Tuticorin ．．．	＂	＂	＂	宫	＂	＂		
18	Minicoy $\quad .$.	＂			號	＂	3.934	员	$\stackrel{\circ}{8}$
19 20	$\underset{\text { Pamban }}{\text { Galle }}$（	＂	0.012	$\cdot 874$	$\stackrel{\text { a }}{ }$		$3 \cdot 947$	$\stackrel{1}{3}$	3
		＂	＂	＂	$\stackrel{4}{4}$	＂	＂	4	－
21	Colombo	＂	，	＂	\％	，	＂	$\stackrel{8}{4}$	\％
22	Trincomalee ．．．	，	，	．，	\bigcirc	，	＂	$\stackrel{\square}{8}$	尔
23	Negapatam ．．．	＂	＂	＂	$\stackrel{\infty}{\square}$	．	＂	$\stackrel{\square}{\circ}$	
24	Madras ．．．	，	，	＂	＋	＂	＂		
25	Cocanada ．．．	＂	，	＂		＂	＂		
26	Vizagapatam ．．．	，	，			＂	＂		
27	False Yoint ．．．	．，	$0 \cdot 013$	－875		－＂20	＂		
28	Akyab $\quad .$.	＂	$0 \cdot 014$	－876		4．223	＂		
29	Diamond Island ．．．	＂，				．	＂		
30	Mergui	＂，	0.015	$\because 877$		＂，	，＂		
31	Port Blair ．．．	．	0.014	－ 876					
32	Dnblat ．．．	＂，	0.013	－875		4．224	＂		
33	Diamond Harbour								
34	Kidderpore ．．．	＂＇，	\because			＂	＂，		
35	Chittagong ．．．	＂，	0.014	876		$4 \cdot 223$	＂		
36	Bassein ．．．	＂	．．	．			＂		
37	Elephnnt Point ．．．								
38	Rangonu ．．．	＂，	＂，	＂		＂．	＂，		
39	Amherst ．．．	＂	＂	，		＂	＂		
40	Moulmein ．．．	＂	．	，		\cdots	＂		

The Tides

COMPUTATIONS FOR data for 1923 TIDE-TABLES.

$$
p_{1}
$$

Table 15. For 0 hoars lst January 1923 ... $=281^{\circ} \cdot 6108$
Table 16. Inorement to 0 hours 29th Jane $1923=\frac{+0.00838}{281 \cdot 61918}$
Dedact for 12 hoars to bring it to midnight 28th-29th

Jane 1923	\ldots	\ldots	\ldots	-	0.00002
For all ports	\ldots	\ldots	\ldots	$p_{1}=281 \cdot 61916$ or $281^{\circ} \cdot 619$	

p_{0} or π

From Table III for Jany. 01923 i.e. noon Dec. 31,1922 $=189^{\circ} \cdot 98899$
Deduct for 3 days i.e. from 0 hrs . 31st Dec. to 0 hrs .
28th Dec. 1922, vide Table V
$\begin{array}{ll}\ldots & =-0 \cdot 33421 \\ \ldots & =189 \cdot 65467\end{array}$
add constant vide footnote Table III
… $\quad+0 \cdot 136$
p_{0} or $\pi=189^{\circ} \cdot 79067$ or $189^{\circ} \cdot 791$ for Green wich,

Constant for Computing P from p_{0}
$\mathbf{P}=p_{0}+$ constant $-\zeta$ or values of ζ for various ports
$P=p_{0}+20 \cdot 560-3 \cdot 949=p_{0}+16 \cdot 611$ for ports from Nos. 1 to 3 and 5.
$P=p_{0}+20 \cdot 560-3 \cdot 918=p_{0}+16 \cdot 612$ for port No. 4 and for ports from Nos. 6 to 18.
$\mathrm{P}=p_{0}+20 \cdot 560-3 \cdot 947=p_{0}+16 \cdot 613$ for ports from No. 19 to end.

$$
\begin{array}{rlr}
I & =18^{\circ} \cdot 533 \text { for all ports. } \\
1 I & =9^{\circ} \cdot 2665=9^{\circ} & 15^{\prime} 59^{\prime \prime} \cdot 4 \\
\text { Log. } \cot .1 I & =10 \cdot 7873970 & \text { Log. } \tan \frac{1}{2} I=9 \cdot 21260 \\
\cot .1 I \text { or } N N & =6 \cdot 129 & \tan ^{2} I I=8 \cdot 42520 \\
\cot ^{2} . I I & =37 \cdot 564641 & \\
\frac{1}{6} \cot ^{2} . \$ I & =6 \cdot 2608 &
\end{array}
$$

$\boldsymbol{x}_{\mathrm{n}}$ (sidereal time at mean noan)
hrs. mts. secs.
Nautical Aiamanac for
28th Dec. $1922=18 \quad 24 \quad 41 \cdot 12$
hrs, mts.
$=18 \quad 24 \cdot 6859$
hre.
$=18.4114217$
or $276^{\circ} \cdot 171326$
$=276^{\circ} \cdot 171$
for Greenwich

s_{0} (moon's mean longitude)

Nantical Almanac for
27th Jec. $1922=19^{\circ} .4754$
Daily Motion for 1 day $=+18 \cdot 1764$
\therefore for noon 28th Dec. $1922-\frac{32 \cdot 6518}{}$
Correction p. 598 NA
$-40^{\prime \prime} \cdot 4=\frac{-0^{\circ} \cdot 011}{\text { for Greenwich }}$

COMPDTATION FOR DATA FOR 1923 TIDE-TABLES.

$$
I=18^{3} \cdot 533 \text { for all ports }
$$

From Table 18 (1) f for $18 \cdot 5=1.03672$
and " $0 \cdot 033=-0.0001947$
Augmenting factor f for $18 \cdot 533=1 \cdot 0365253=1 \cdot 037$

$$
\begin{aligned}
& \text { for } M_{2}, N, 2 N, \nu, M S, 2 S M \text { and MSf tides } \\
& (1 \cdot 037)^{2}=1 \cdot 075 \text { for } M_{4}, 2 M S \text {, and MN tides } \\
& (1 \cdot 037)^{3}=1 \cdot 115 . M_{6} \text { tide } \\
& (1 \cdot 075)^{2}=1 \cdot 156 \text { for } M_{8} \text { tide }
\end{aligned}
$$

From l'able 18 (3) f for $18.5=0.81333$
and.,$\quad \underline{0.093}=+0.00132$
Augmenting factor f for $18 \cdot 533=0.81465=0.815$ for O and Q tides
From Table 18 (5) f for $\overline{18.5}=0.83416$

$$
\text { and } " \underline{0.033=+0 \cdot 00128}
$$

Augmenting factor f for $18 \cdot 533=0.83544$ or 0.835 for J. tide
From Table $18(8) f$ for $18.5=0.88625$

$$
\text { and }, \quad 0 \cdot 033=+0 \cdot 00079
$$

Augmenting factor f for $18.533=0.88704$ or 0.887 for K_{1} tide From Table 18 (9) f for $18 \cdot 5=0 \cdot \overline{5} 462$

$$
\text { and } " \underline{0.033=+0.00123}
$$

Angmenting factor for $18.533=0.75585$ or 0.756 for K_{2} tide
$\mathrm{M}_{2} \mathrm{~K}_{1}=1.037 \times 0.887=0.919819$ or 0.920 for $\mathbf{M}_{2} \mathrm{~K}_{1}$ tide
$2 \mathrm{M}_{2} \mathrm{~K}_{1}=\mathrm{M}_{4} \underline{K}_{1}=1.075 \times 0.887=0.953525$ or 0.954 for $2 \mathrm{M}_{2} \mathrm{~K}_{1}$ tide
Augmenting factor
$\frac{1}{f}$ for M_{2} from Table $18(1)$ for $18 \cdot 5=0 \cdot 96458$

$$
\text { and }, \frac{0.033=+0 \cdot 00018}{0 \cdot 96476} \text { or } 0 \cdot 965
$$

fori $M_{2}, N, 2 N, \nu, M S, 2 S M$, and MSf. tides.

Chap. I.]
The Tides

COMPOTATIONS FOR DATA

No	Name of PortGreenwich *	h_{0}		s_{0}		p_{0}		P		2 P
		E.L. Corr. *	$\left\|\begin{array}{c}\text { For } \\ \text { Port }\end{array}\right\|$	E.L. Corr. *	$\left\|\begin{array}{c}\text { For } \\ \text { Port } \\ \hline 32 \cdot 641\end{array}\right\|$	E.L. Corr. *	$\left\lvert\, \begin{gathered} \begin{array}{c} \text { For } \\ \text { Port } \end{array} \\ 189 \cdot 791 \end{gathered}\right.$	(Constant $-\xi)$	$\begin{gathered} \mathrm{P} \\ = \\ \left(p_{0}+\right. \\ \text { const } \\ -\zeta) \end{gathered}$	
1	Suez	$\left\|\begin{array}{c} - \\ 0^{\circ} \cdot 089 \end{array}\right\|$	$276^{\circ} \cdot 082$	$\left\|\begin{array}{c} - \\ 1 \cdot 191 \end{array}\right\|$				$\left\|\begin{array}{c} + \\ 16^{\circ} \cdot 611 \end{array}\right\|$	$206^{\text {c }} 392$	- 784
2	Perim	0-119	$276 \cdot 052$	$1 \cdot 5893$	31.052	0.013	$\cdot 778$		- 389	$\cdot 778$
3	Aden	0-123 2	276-048	$1-6473$	$30 \cdot 9940$	- 014	-777		- 388	776
4	Musxat	- 160	$276 \cdot 011$	$2 \cdot 1453$	30-496	0.018	. 773	-612	- 385	770
5	Bushire	0.139 2	276.0321	$1 \cdot 8573$	$30 \cdot 784$	0.016	$\cdot 775$	611	-386	$\cdot 772$
6	Karachi	0-183 2	$275 \cdot 988$	$2 \cdot 4513$	$30 \cdot 1900$	$0 \cdot 021$	-770	-612	-382	-764
7	Okha	O-189 ${ }^{2}$	275-9822	$2 \cdot 5293$	30-112	$0 \cdot 09$		"		
8	Porbandar	$0 \cdot 191{ }^{2}$	- 77 -980 2	$2 \cdot 5483$	$30 \cdot 093$	$0 \cdot 092$	$\cdot 769$	"	$\cdot 381$.762
9	Port Albert Victor	- $196{ }^{-1}$	275.975	$2 \cdot 618$	30.023	"	"	"	"	,
10	Bharnagar ...	0-198 2	275-973	$2 \cdot 6413$	30.000			"		
11	Bombay (A.B) ...	- 1992	$275 \cdot 972{ }^{2}$	$2 \cdot 666$	29-975	0.023	$\cdot 768$	"	. 380	.760
12	Do. (Prince's $\begin{aligned} \text { Dock) }\end{aligned}$	0-199 2	$275 \cdot 972$	2-667	29-974	"	"	,	"	,
13	Marmagao ...	0-202	275-969	2.7012	$29 \cdot 940$	"	"	,	"	,
14	Karwar	0-203	275-968	2-712	29-929	,	"	"	"	".
15	Beypore ...	0. 2082	$275 \cdot 963$	2-7742	$29 \cdot 867$,		
16	Cochin	0-209 2	$275 \cdot 962$	- 7912	29-850	0. 024	$\cdot 767$	"	- 379	$\cdot 758$
17	Taticorin	0-214	275.957	2.860	29.781			\cdots		
18	Minicoy	0-200 2	$275 \cdot 9712$	2-674 2	29•967	0.023	- 768		- 380	$\cdot 760$
19	Pamban	0-2172	275-954	$2 \cdot 899$	29. 742	0.025	-766	613	- 379	-758
20	Galle -	a-220 2	275-9512	$2 \cdot 936$	29-705	,	.,	"		,
21	Colombo	0. 219	255.952	2-922	29.719	"	"	"	,'	"
22	Trincomalue ...	0-222\|	ㄴ15-949	2-972	29668	"	"	"	"	"
23	Negapatam	0-219	275.952	2.92:2	29.719	,	"	,	"	"
24	Madras	O-220 2	275951	2-939 ${ }^{2}$	29-702	"	,.	,	"	,
25	Coconada	$0 \cdot 225$	$275 \cdot 946$	3.0102	29-631					
96	Vizagapatam	$0 \cdot 228$	$275 \cdot 943$	$3 \cdot 048$	$29 \cdot 593$	0.026	$\cdot 765$	"	378	7-56
27	False Point	0-238	$275 \cdot 933$	$3 \cdot 177$	29464	$0 \cdot 027$	-764	,	- 377	- 5 - 4
28	Akyab	0-254	$275 \cdot 917$	$3 \cdot 4002$	29-2410	(). 029	762	,	$\cdot 375$	$\because 50$
29	Diamond Island...	$0 \cdot 258$	$275 \cdot 913$	$3 \cdot 451$	$29 \cdot 190$					
30	Mergai ...	$0 \cdot 270$	$275 \cdot 901$	3-609	$20 \cdot 032$		760	",	$\cdots 373$	746
31	Port Blair	0.254	275-917	$3 \cdot 395$	$29 \cdot 246$	0. 029	-782	",	- 375	-750
32	Dablat	0-241	275930	3-226	$29 \cdot 415$	0.027	-764	,"	- 377	$\cdot 754$
33	Diamond Harbour	人. 241	$275 \cdot 930$	3-2.88	$29 \cdot 413$					
34	Kidderpore	$0 \cdot 242$	275.929	3-233	29-408			",		
35	Cbittagong	0-251	275-920	3-361	29-289	0.028	763	",	$\cdot 376$	'752
36	Bassein	0-260	275-911	3-469	29-172		762	,	. 375	$\cdot 750$
37	Elephant Point ...	0.264	275-907	$3 \cdot 625$	$29 \cdot 1160$	$0 \cdot 030$	761		374	748
38	Rangoon ...	0.263	$275 \cdot 908$	3-520	29-121	"		.		,
39	Amherst	0.267	275.904	3-571	29-070	"	,	"	"	"
40	Moulmein ...	0.267	275-904	3.573\|	$\|29 \cdot 068\|$..	,	:	"	"

Спиa. I.]
Theory and Computation

FOR 1923 tide tables.

家运	
Botic	

Chap. I.]
Teeory and Computation
compdtation of data for 1023 tide tables.

$\begin{gathered} h_{0} \\ \text { or } S_{8} \end{gathered}$ $+$	ν +	$h_{0}-\nu$ +	$\mathbf{S O}_{0}$ +	6 +	8. $-\boldsymbol{\zeta}$	$\begin{gathered} V_{0}+u \\ \text { for } M_{1} \\ \square \\ \left(h_{0}-v\right)- \\ \left(s_{0}-\zeta\right) \end{gathered}$	$\begin{gathered} V_{0}+u \\ \text { for }_{2}, \\ M S \\ -2 S M \\ \& \\ -M S f \end{gathered}$	$\begin{gathered} F_{0}+u \\ \text { for } \\ M_{4} \\ \& \\ 2 \mathrm{MS} \end{gathered}$	$V_{0}+u$ for M_{6}	4080
-	。	0	-	。		-	-	-	-	
276.082	4. 225	271-857	$31 \cdot 450$	3-949	$27 \cdot 501$	244. 356	128•712	257-424	26-136	1
-052		-827	-052		- 103	-724	129-448	$258 \cdot 896$	$28 \cdot 344$	2
.048	"	-823	30.994		- 045	$\cdot 778$. 556	259•112	-668	3
-011	,	-786	- 496	3-948	26.548	245 - 238	$130 \cdot 476$	260-952	$31 \cdot 428$	4
. 032		-807	-784	3-949	- 835	244-972	129.944	259-888	29-832	5
$275 \cdot 988$	$4 \cdot 224$	-764	-190	3-948	- 242	275-522	131.044	262-088	33-132	6
- 982	"	-758	- 112	"	- 184	-594	- 188	- 376	- 564	7
-980	"	$\cdot 756$	-093	"	- 145	-611	- 222	- 444	-666	8
- 975	"	-751	. 023	,	-075	- 676	- 352	- 704	34. 056	9
-973	"	-749	30.000	"	-052	-697	- 394	-788	- 182	10
-972	"	-748	29-975	"	. 027	-721	-442	- 884	- 326	11
-972	"	$\cdot 748$	$\cdot 974$	"	- 026	-722	-444	- 888	-332	12
-969	"	$\cdot 745$	-940	"	25.992	-753	- 506	$263 \cdot 012$	- 518	13
-968	"	$\cdot 74.4$	-929	"	-981	-763	-526	- 052	-578	14
-963	"	$\cdot 739$	-867	"	-919	-820	-640	-280	-920	15
-962	"	-738	. 850	"	-902	-836	-672	- 344	$35 \cdot 016$	16
-957	"	-733	$\cdot 781$	"	-833	- 900	- 800	- 600	- 400	17
-971	"	$\cdot 747$	-967		$26 \cdot 019$	-728	-456	$262 \cdot 912$	34-368	18
-954	"	$\cdot 730$	$\cdot 742$	3-947	25-795	-935	- 870	$263 \cdot 740$	$35 \cdot 610$	19
-951	"	-727	-705	"	$\cdot 758$	-969	-938	- 876	- 814	20
-952	"	-728	-719	,	-772	- 956	. 912	-824.	. 736	21
-949	"	-725	-669	"	$\cdot 722$	246.003	132.006	264. 012	$36 \cdot 018$	22
-952	"	-728	- 719	"	$\cdot 772$	245-956	$131 \cdot 912$	263.824	$35 \cdot 736$	23
$\cdot 951$	"	-727	-702	"	-755	- 972	- 944	- 888	-832	24
-946	"	-722	-631	"	-684	246.038	$132 \cdot 076$	264-152	$36 \cdot 228$	25
-943		-719	-593	"	-646	- 073	- 146	- 292	-438	26
-933		-709	-464	"	- 517	- 192	-384	-768	$37 \cdot 152$	27
-917	1.223	-694	-241	"	- 294	$\cdot 400$	- 800	$265 \cdot 600$	$38 \cdot 400$	28
-913	"	-690	- 190	"	- 243	- 447	- 894	-788	-682	29
-901		-678	-032	"	-085	- 593	$133 \cdot 186$	$266 \cdot 372$	$39 \cdot 558$	30
$\cdot 917$		-694	- 246	"	-299	- 395	$132 \cdot 790$	$265 \cdot 580$	38.370	31
-930	1.224	-706	- 415	"	-468	-238	- 476	264.952	37.428	33
-930	"	-706	-413	"	-466	- 240	- 480	-960	440	33
-929		-705	- 408	"	-461	- 244	-488	. 976	- 464	34
-920	$4 \cdot 223$	-697	- 280	"	- 333	- 364	-728	$265 \cdot 456$	38-184	35
$\cdot 911$	"	-688	- 172	"	- 225	-463	-926	-852	-778	36
. 907	"	-684	-116	"	- 169	- 515	$133 \cdot 030$	$266 \cdot 060$	$89 \cdot 090$	37
-908	"	-685	-121	"	- 174	- 511	- 022	- 044	-066	38
-904	"	-681	-070	"	-123	-558	-118	- 232	- 348	39
- 804	"	-881	-068	"	-121	- 560	-120	- 240	-360	40

Chap. I.]
The Tides

COMPUTATION OF DATA

	h_{0}	$-\nu^{\prime}$	$\begin{gathered} -\frac{1}{2} \pi \text { or } \\ +270^{\circ} \cdot 000 \end{gathered}$	$\begin{gathered} -\left(V_{0}+u\right) \\ \text { for } \\ \mathbf{K}_{1} \end{gathered}$		$-2 \nu^{\prime \prime}$	$\begin{gathered} =\left(V_{0}+u\right) \\ \text { for } \\ \mathrm{K}_{2} \end{gathered}$
1	276 ${ }^{\circ}$.082-	$2^{\circ} \cdot 691$	$+270^{\circ} \cdot 000$	$183^{\circ} \cdot 391$	$192^{\circ} \cdot 164$	- 872	$187^{\circ} \cdot 292$
2	-052	,	,	- 361	-104		- 232
3	-048	",	",	-357	-096	",	-224
4	-011	,"	"	-320	-022	"	-150
5 6	.032 275.988	"	"	- 341	- 0.064	"	- 192
6 7	$275 \cdot 988$.982		"	$\cdot{ }^{\cdot} 297$	$\begin{array}{r}191 \cdot 976 \\ .964 \\ \hline 9\end{array}$	"	- 104
8	-980,	"	"	-289	-960	",	-088
9	-975	"	"	-284	-950	"	-078
10	-973	"	",	-282	-946	"	-074
11	-972	"	"	-281	-944	"	- 072
12	-972	"	"	-281	-944	"	-072
13	-969	"	"	-278	-938	"	-066
14	-968	"	"	-277	-936	"	-064
15	-968	,"	",	-272	-926	",	-054
16	-962	"	"	-271	-924	"	-052
17	-957	"	"	-266	-914	"	-042
18	$\cdot 971$	"	"	-280	-942	"	-070
19 20	.954 .951	"	\cdots	-263	.908 .902	"	.036
21	-952	"	"	-261	-904	"	.032
22	-949	"	"	-258.	- 898	",	-026
23	-952	"	,	-261	-904	",	-032
24	-951	"	"	-260	-902	"	-030
25	-946	"	"	- 255	- 892	"	-020
26	-943	,	",	- 252	-886	,	. 014
27	-933	",	",	-242	- 866	"	186.994
28	-917	"	"	-226	-834	"	. 962
29	-913	"	"	- 222	- 826	"	-954
30	-901	"	",	-210	- 802	"	-930
31	$\cdot 917$	"	"	-226	-834	"	-962
32	-930	,	",	-239	-860	"	-988
33	. 930	"	,	- 239	- 860	"	-988
34	-929	"	,	-238	-858	"	-986
35 36	. 920	"	"	$\cdot 249$	-840	"	. 968
	$\cdot 911$	"	"	. 220	-822	"	$\cdot 950$
37	-907	"	"	- 216	- 814	"	-942
38	-908	"	",	- 217	- 816	"	-944
39 40	. 904	"	"	$\cdot 213$.213	$\cdot .808$	"	.936 .936
40	-904	"	"	-213	-808	"	-936

Chap. I.]
Theory and Computation

FOR 1923 TIDE TABLES.

($h_{0}-\nu$)	$\underset{\text { or Mf }}{-2\left(s_{0}-\xi\right)}+$		$\begin{aligned} & =\left(V_{0}+u\right) \\ & \\ & \text { for } 0 \end{aligned}$		$\begin{aligned} & \frac{1}{2} \pi \text { or } \\ & 1^{\circ} 000 \end{aligned}$	$\begin{aligned} & =\left(F_{0}+u\right) \\ & \text { for } \mathrm{P} \end{aligned}$
271 - 857	$-55^{\circ} \cdot 002$	$+90^{\circ} \cdot 000$	$30{ }^{\circ} \mathrm{P} 85$	$83^{\circ} \cdot 918$	$90^{\circ} \cdot 000$	$173 \cdot 918$
-827	-54.206	.	$307 \cdot 621$	-948	"	$\cdot 948$
-823	-54.090		${ }^{\text {. } 733}$	-952	",	-952
-786	$-53 \cdot 096$	"	308.690	-989		- 989
-807	-53.670	"	$\cdot 137$ 309.280	. 968		-968
- 764	-52.484	"	309.280	84.012	"	174.012
$\cdot 758$	-328	"	$\cdot 430$	-018	"	$\cdot 018$
-756	- 290	"	-466	-020		-020
-751	- 150	"	- 601	- 025	"	-025
-749	- 104	",	-645	-027	"	. 027
$\cdot 748$. 054	"	$\cdot 694$.	-028	"	-028
$\cdot 748$	-052	"	-696 ${ }^{\text {- }}$	-1)28	"	-028
-745	+51.984	"	$\cdot 761$	-031	"	. 031
$\cdot 744$	- .962	"	$\cdot 782$.032	"	-032
-739	-838	: "	$\cdot 901$	- 037	"	-037
-738) .804	"	-934	-038	"	-038
-733	$\cdot 666$	"	310.067	-043	"	. 043
$\cdot 747$	-52.038	",	$309 \cdot 709$	-029	",	-1)29
$\cdot 730$	$-51 \cdot 590$	"	310•140	-046	"	-046
$\cdot 727$. 516	"	-211	-049	,	-049
- 728	- 544	"	- 184	- 048	"	- 048
-725	-444	"	-281	-051	",	. 051
$\cdot 728$	- 544	"	-184	-018	"	-048
$\cdot 727$	-510	"	-217	-049	"	-049
-722	-368	"	-354	-054	"	. 054
-719	- 292	,	- 427	-057	",	. 057
-709	. 034	,	-675	-067	"	. 067
-694	$-50 \cdot 588$,	311-106	. 083	,"	-083
-690	-486	"	- 204	- 087	"	-087
-678	- 170	,	- 508	-099	",	-099
-694	-598	"	-096	. 083	,	. 083
-706	-936	,	$310 \cdot 770$	-070	",	-070
-706	-932	"	-774	-(170	"	- 070
$\cdot 705$. 922	,"	-783	-071	",	-071
-697	-666	"	311.031	-080	"	-080
-638	-450	"	. 238	-089	"	-089
-684	-338	"	- 346	-093	"	-093
-685	- 348	",	-337	-092	",	-092
-681	- 246	"	-435	-096	"	-096
-681	-242	"	-439	-096	"	-096

Cerar. I.]
THi Tiders

COMPUTATION FOR DATA FOB 1923 TIDE TABLES.

$\begin{aligned} & H_{0} \\ & \text { O } \\ & \text { H } \end{aligned}$	$\begin{gathered} \left.\left(h_{0}-\nu\right)+\left(s_{0}-p_{0}\right)-270 \cdot 000\right) \\ \text { or } \mathrm{Mm} \end{gathered}$			$\begin{gathered} =\left(V_{0}+u\right) \\ \text { for } J \end{gathered}$	$\begin{gathered} \left(D_{0}+u\right) \text { for } \mathrm{O}- \\ \left(s_{0}-p_{0}\right) \end{gathered}$	$\begin{gathered} m\left(D_{0}+u\right) \\ \text { for } Q \end{gathered}$
1	$271^{\circ} \cdot 857$	+201.669	$+270^{\circ} \cdot 000$	$23^{\circ} \cdot 526$	306'855-201 - 669	$105^{\circ} 186$
2	- 827	. 274	+ ,	- 101	307-621 - 274	106.347
3	. 823	- 217	+	- 040	. 733 . 217	- 516
4	-786	$+200 \cdot 723$	+	22.509	308•690-200•723	$107 \cdot 967$
5	- 807	+201-v09	+ "	. 816	- 137-201.009	-128
6	-764	$+200 \cdot 420$	+ "	-184	309-280-200.420	$108 \cdot 860$
7	-758	. 342	+ ${ }^{+}$	- 100	- 430 -342	109•088
8	-766	-324	+ "	-080	- 466 -324	- 142
9	-751	-254	+ ,	. 005	-601 -254	-347
10	- 749	- 231	+ "	21.980	-645 -231	$\cdot 414$
11	-748	-207	+ "	-955	-694 -207	-487
12	-748	- 206	+	-954	-696 -206	-490
13	-745	- 172	+ "	-917	-761 -172	- 589
14	-744	- 161	+ "	- 905	-782 . 161	-621
15	-739	. 099	+ "	- 838	.901 .099	- 802
16	.738	-083	+ "	-821	-934 -083	-851
17	$\cdot 733$	- 014	+ "	-747	310.067 . 014	$110 \cdot 053$
18	-747	- 199	+ "	-946	309•709 - 199	$109 \cdot 516$
19	-730	+199.976	+ "	- 706	310.140-199•976	$119 \cdot 164$
20	-727	-939	+ "	-666	.211 .939	- 272
21	-728	-953	+ "	. 681	-184 -953	-231
22	-725	-903	+ "	-628	- 281 -903	-378
23	-728	-953	+ ,	-681	- 184 . 953	- 231
24	-727	-936	+ ,	-6t3	. 217 . 936	-281
25	-722	-865	+	- 587	-354 . 865	- 489
26	- 719	- 828	+ "	-547	. 427 . 823	- 599
27	-709	. 700	+ "	. 409	-675 -7u0	. 975
28	-694	-479	+	-173	311-106 - 479	111.627
29	- 690	- 428	+ ,	. 118	- 204 -428	. 778
30	- 678	- 272	+ ",	$20 \cdot 950$	- 508 . 272	112.236
91	-694	. 484	+ "	21-178	. 096 . 484	111.612
32	$\cdot 706$	-651	+ "	-357	310.770 651	- 119
33	. 706	-649	+ ${ }^{\prime}$	- 355	-774 -649	- 125
34	$\cdot 705$	-614	+	$\cdot 349$. 783 . 644	- 139
35	-697	. 517	+ "	- 214	311.031 . 517	-514,
36	-688	$\cdot 410$	+ ,	-098	.238 . 410	. 823
37	-684	- 355	+ ,	-039	-346 -355	-991
38	- 685	- 360	+ "	. 045	. 337 -360	. 977
39	. 681	- 309	+ "	20.990	- 435 -309	$112 \cdot 126$
40	-691	- 307	+ "	-988	-439 -307	. 232

COMPUTATION OF DATA FOR 1923 TIDE．TABLES．

$\begin{aligned} & \text { + } \\ & \text { 芯 } \\ & \text { 4 } \\ & \dot{0} \\ & \dot{8} \end{aligned}$	$\left(V_{0}+u\right)$ for $\mathrm{M}_{2}+\left(\delta_{0}-p_{0}\right)+\pi-\mathrm{R}$				$\begin{aligned} = & \left(V_{0}+u\right) \\ & \text { for } \mathrm{L} \end{aligned}$	$\begin{array}{r} \left(V_{0}+u\right) \mathrm{f} \\ -\left(s_{0}-\right. \end{array}$			$\begin{gathered} =\left(\Gamma_{0}+u\right) \\ \text { for } \mathrm{N}) \end{gathered}$	
1	$128 \cdot 712+20^{\circ} \cdot 669+180 \cdot 000+351 \cdot 985$				142．366	128．712－	－ 669		$287^{\circ} \cdot 043$	
2	$129 \cdot 448$.556	－ 274	＂	． 986	142－708	$129 \cdot 448$	－ 274		288－174	
3		$\begin{array}{r} \cdot 556 \\ 130 \cdot 476+200 \cdot 723 \end{array}$		＂	． 986	$142 \cdot 759$	－ 656	－ 217		－ 339
4				＂	． 987	$143 \cdot 186$	130．476	－ 723		289•753
5			＂		142.940	129•944	－ 009		288．935	
6	$\begin{aligned} & 129 \cdot 944+201 \cdot 009 \\ & 131 \cdot 044+200 \cdot 420 \end{aligned}$		＂	－988	$143 \cdot 452$	131．044－	． 420		290.624	
7	$\begin{array}{r} \cdot 188 \\ \cdot \\ \hline \end{array}$	$\begin{array}{r} \cdot \mathbf{3 4 2} \\ \cdot 324 \end{array}$	＂		－518	－188	－ 342		－846	
8			＂	＂	－534	－222	－324		－898	
9	－352	$\cdot 254$	＂	＂	－ 594	－352	－254		291．098	
10	.394.442	－ 231	＂，	＂，	－613	－394	－231		－ 163	
11		$\begin{aligned} & \cdot 207 \\ & \cdot 206 \end{aligned}$	＂	＂	－637	－442	－207		－ 235	
12	$\begin{array}{r} \cdot 442 \\ \cdot 444 \end{array}$		，	＂	－638	－444	－ 206		－ 238	
13	－ 506	$\cdot 172$	＂	＂	－666	－506	－ 172		－ 334	
4	.526.640	$\cdot 161$	＂	＂	－675	－556	$\cdot 161$		－365	
1516		$\begin{array}{rr}.640 & .099 \\ .672 & .083\end{array}$		，	＂	$\cdot 727$	－640	－099		－541
				＂	＂	－743	－672	－083		－589
17	． 800	$\cdot$$\cdot$$\cdot 1914$	＂	＂	－802	－ 800	． 014		$\cdot 786$	
	$\cdot 456$$.870+1$		＂	＂	－643	－456	－199		－ 257	
1920		$\begin{array}{r} \cdot 870+199 \cdot 976 \\ \cdot 938 \quad \cdot 939 \end{array}$		＂	＂，	－834	－870－	－ 976		－894
				＂，	＂	－865	－938	$\cdot 939$		－999
21	$\begin{array}{r} \cdot 912 \\ 132 \cdot 006 \end{array}$	－ 253	＂	＂	－ 353	－912	－953		－959	
22		－903	＂	＂	－ 897	132.006	$\cdot 903$		$292 \cdot 103$	
23	$\begin{array}{\|l\|l\|} \hline 132 \cdot 006 \\ 131 \cdot 912 \end{array}$	$\begin{aligned} & .953 \\ & \cdot 936 \end{aligned}$	＂	＂	－ 858	$131 \cdot 912$	－953		$291 \cdot 959$	
24	－944		＂	＂	－868	－944	－936		$292 \cdot 008$	
25	$132 \cdot 076$	－ 865	＂	＂	－929	132076	． 865		－ 211	
26	－ 146$\cdot 384$	－ 828	＂	$\stackrel{\square}{8}$	－962	－146	－ 828		－ 318	
2728		$\begin{array}{r} \cdot 700 \\ \cdot \\ .479 \end{array}$	＂	989	144．073	－ 384	－700		－684	
	$\begin{array}{r} \cdot 384 \\ \cdot 800 \end{array}$		＂，	＂	－ 268	－800	－479		$293 \cdot 321$	
29	$\begin{array}{r} \cdot 894 \\ 183 \cdot 186 \end{array}$	$\begin{array}{r}-428 \\ -272 \\ \hline\end{array}$	＂	＂	$\cdot 311$	－ 894	－428		$\cdot 466$	
30			＂	＂	－447	$133 \cdot 186$	－ 272		． 914	
31	$133 \cdot 186$ $132 \cdot 790$		＂	＂	$\cdot 263$	132－790	$\cdot 484$		． 306	
32	${ }^{-476}$	$\begin{array}{r} \cdot 484 \\ \cdot 651 \end{array}$	\cdots	＂	最（ ${ }^{116}$	－ 476	－651		（292．825	
33	－480	－649		＂	${ }_{\text {c }}^{6} \cdot 118$	－480	． 649		． 831	
34	－ 488	$\cdot 644$	＂，			－488	－644	包号	． 844	
35 36	－728	$\cdot 617$		＂	岛菏－ 366	－728	$\cdot 517$		$293 \cdot 211$	
36	－926	－ 410	，	＂	宕 3.325	－ 926 － 410			． 516	
37	133.030	－355	＂	＂，	宮定 3.374	133．030	－ 355	首䓪		
38	－022	－ 360	＂			－ 022	－ 360	弟㟧	－662	
39	$\cdot 116$	$\cdot 309$	＂			－ 116	－309	宫衰	－807	
40	$\cdot 120$	$\cdot 307$	＂	＂	${ }^{4}$ \％${ }^{\circ}$（ 416	－ 120	－ 307	\％	． 813	

Orip. I.]
The Tides

COMPDTATION OF DATA

\qquad	$\left(F_{0}+u\right)$ for $M_{2}+\left(s_{0}-p_{0}\right)+2 h_{0}-2 s_{0}$				$=\left(F_{0}+u\right)$	$\begin{gathered} \left(V_{0}+u\right) \text { for } \\ 2 \text { SM } \\ = \\ -\left(\overline{V_{0}}+u\right) \end{gathered}$	$\left(\begin{array}{c} \left(V_{0}+u\right) \\ \mathbf{f o r}^{2} \end{array}\right.$ $1=$	$\underset{\left(s_{0}-\mu_{0}\right)}{\left(V_{0}+u\right) \text { for }}$	
11	$128 \cdot 712+201 \cdot 669+192 \cdot 164+297 \cdot 100$				$90 \cdot 645$	231.288	5.537	287.043-201.669	
2 1	129.448	274	-104+	-896	$100 \cdot 722$	$230 \cdot 552$	- 567	288.174	. 274
3	- 556	. 217	. $196+$. 012	. 881	. 444	-571	. 339	. 217
4	$129 \cdot 944+201 \cdot 009$		$\cdot 022+299 \cdot 008$		102.229	$229 \cdot 524$	-608	289.753-200.723	
5			.004+	. 432	101.449	$230 \cdot 056$	-587	298.935-201	. 019
6	$131 \cdot 044+200 \cdot 420+101 \cdot 976+299 \cdot 620$				103.060	228.956	-631	290.624-200.420	
7	- 188	- 342	-964	-776	-270	-812	-637	. 846	-342
8	-282	- 324	-960.	- 814	-320	-778	-639	- 898	-324
9	-358	-254	-950	.954	- 510	-648	-644	291.098	-254
10	-394	-231	$\cdot 946+$. 000	. 571	-608	-646	- 163	-231
11	- 442	. 207	. 844	. 050	-643	- 558	-647	-235	-207
12	- 444	. 206	. 944	-052	-646	- 556	-647	-238	-206
13	-506	. 172	. 938	- 120	. 730	-494	-650	-334	-172
14	-526	- 161	-836	-142	-765	-474	-651	-385	- 161
15	-640	-099	.926	-266	-931	-360	-656	-541	. 099
16	-672	-093	. 824	. 300	. 979	-328	-657	- 589	. 083
17	. 800	. 014	.914	- 438	104.166	-200	-662	-786	. 014
18	- 456	-199	-942	. 066	103.683	-544	-648	-257	-199
10	-870+1	. 976	-908	- 516	104.270	- 130	-665	-891-	. 976
20	-938	.939	.902	. 590	-369	-062	-668	-999	-939
21	. 912	. 953	. 904	- 562	-331	. 088	-667	. 959	. 953
22	132.006	. 903	-898	-662	-469	$227 \cdot 994$	$\cdot 670$	$292 \cdot 103$	-903
23	131.912	. 953	. 904	. 562	-331	228.088	- 667	291.859	-953
24	-944	-936	-002	-598	-378	. 056	-668	$292 \cdot 008$. 936
25	132.076	-865	-892	. 738	-571	227.924	$\cdot 673$	- 211	-865
26	. 146	-829	-886	. 814	-674	.854	-676	- 318	.828
27	-384	$\cdot 700$	-866+	-072	105.022	-616	-666	. 684	$\cdot 700$
28	-800	-479	-834	$\cdot 519$. 631	. 200	-702	293.321	. 479
29	- 884	-488	-826	-620	$\cdot 768$	- 106	-706	-488	$\cdot 428$
30	$133 \cdot 186$	- 272	- 802	-936	106.106	228.814	$\cdot 718$. 914	. 272
31	182.780	-484	-834	- 508	$105 \cdot 616$	$227 \cdot 210$	-702	-306	- 484
32	-476	-651	-860	-170	-157	-524	-889	$292 \cdot 825$	-651
33	-480	-649	-869	. 174	-163	-520	-689	-831	-649
34	. 488	-644	-858	$\cdot 184$	-174	- 512	-690	. 844	-644
85	-728	-517	-840	. 410	- 525	- 272	-699	299.211	. 517
36	. 828	-410	-822	-658	- 814	. 074	-708	- 516	. 410
37	133.030	-355	-814	-768	-967	226.970	. 712	-675	. 350
38	. 092	-360	. 816	-759	. 956	- 978	. 711	-662	-360
30	-116	-309	. 808	-860	106.053	- 884	. 715	-807	. 309
40	- 120	. 309	-808	-884	.099	-880	. 715	. 813	. 307

Chap. I.]

Theory and Computation

FOR 1923 TIDE-TABLES.

$\begin{gathered} =\left(V_{0}+u\right) \text { for } \\ 2 \mathrm{~N} \end{gathered}$	$\begin{gathered} \left(V_{0}+u\right) \text { for } M_{2}+ \\ \left(V_{0}+u\right) \text { for } N \end{gathered}$		$\begin{gathered} =\left(V_{0}+u\right) \\ \text { for } \mathrm{MN}_{4} \text { or } \\ \mathbf{M n}_{2} \mathrm{~N}^{2} \end{gathered}$	$\begin{aligned} & \left(V_{0}+u\right) \text { for } \mathbf{M}_{2}+ \\ & \left(V_{0}+u\right) \text { for } \mathbf{K}_{1}+ \end{aligned}$		$\begin{aligned} & =\left(\Gamma_{0}+u\right) \text { for } \\ & \mathbf{M K}_{\mathbf{3}} \mathrm{Or} \mathrm{M}_{2} \mathrm{~K}_{1} \end{aligned}$
85.374	$128 \cdot 712$	87.043	$55 \cdot 755$	$128 \cdot 712$	83.391	312.103
86.900	$129 \cdot 448$	68.174	57-822	$129 \cdot 448$	-361	-809
$87 \cdot 122$	-556	. 339	- 895	-556	-357	. 913
$89 \cdot 030$	130.476	89.753	$60 \cdot 229$	$130 \cdot 476$	-320	$313 \cdot 796$
$87 \cdot 026$	$129 \cdot 944$	88.935	$58 \cdot 870$	$120 \cdot 944$	-341	-285
90.204	131.044+	90.624	61.668	131.044	- 297	314-341
. 504	-188	-846	62.034	$\cdot 188$	-291	-479
$\cdot 574$	-222	- 898	-120	-222	-289	. 511
-844	$\cdot 352+$	91-098	-450	-352	-284	-636
. 932	-394	$\cdot 163$	- 557	-394.	-282	$\cdot 676$
91-028	$\cdot 442$. 235	$\cdot 677$	-442	-281	$\cdot 723$
. 032	-444	. 238	. 682	-444	. 281	$\cdot 725$
- 162	- 506	-334	. 840	- 506	-278	-784
- 204	- 526	-365	. 891	$\cdot 526$	$\cdot 277$	- 803
-442	-640	- 541	$63 \cdot 181$	-840	$\cdot 272$	-912
- 506	-672	-589	. 261	-672	. 271	-943
$\cdot 772$	- 800	.786	. 586	- 800	-260	$315 \cdot 066$
$\cdot 058$	-456	- 257	62.713	- 456	. 280	314.736
-918	-870	-894	63.764	-870	- 263	315.133
$92 \cdot 060$	-938	. 999	. 937	. 938	. 260	- 198
-006	. 912	. 950	.871	. 912	. 261	$\cdot 173$
-200	$132 \cdot 006+$	22.103	$64 \cdot 109$	132.006	. 258	-264
- 006	$131 \cdot 912+$	91.959	63.871	$131 \cdot 912$. 261	-173
-072	$\cdot 914+$	2.008	. 052	. 914	. 260	-204
- 346	$132 \cdot 076$	- 211	64.287	$132 \cdot 076$	- 255	- 331
-490	. 146	-318	- 464	-146	- 252	- 398
-981	-384	.694	$65 \cdot 068$	-384	- 242	-626
$93 \cdot 812$. $800+$	3.321	$06 \cdot 121$	-800	-226	316.028
94.038	- 894	- 466	- 360	. 804	-222	-116
-6+2	$133 \cdot 186$	-914	$67 \cdot 100$	133.186	- 210	-396
03.822	$182 \cdot 790$	-308	$68 \cdot 096$	132.790	- 226	. 018
- 174	$\cdot 476+$	2.825	$65 \cdot 301$	- 476	-239	315.715
- 182	-480	-831	-311	- 480	-239	. 719
-200	- 488	-844	-392	-488	-238	.726
-60¢	$\cdot 728+$	3.211	-938	-728	-229	- 857
94-106	- 926	- 518	86. 442	. 828	- 220	316.148
- 820	139.030	-675	-705	133.030	-216	. 246
- 302	. 022	-662	-684	- 022	. 217	-239
-408	-110	. 807	- 923	-116	- 213	-329
- 506	- 120	. 813	. 933	- 120	-213	. 393

Char. I.] The Tides

COMPUTATION OF DATA FOR 1923 TIDE-TABLES.

Chap. I.]
Theory and Computation
computation of datum below mean sea level for 1023 tide tableg.

Chap. I.]

The Tides

104. From these computations the values of $\left(V_{0}+u\right)$ and f obtained are entered in form 17 Tid , and hence, by subtracting ($V_{0}+u$) from κ already entered, ζ is obtained, and by multiplying H by f, the value R is obtained.

The entries for Karachi for data for the 1923 predictions are shown below, as extracted from 24 forms (17 Tid) for the 24 tides whose components are set on the machine.

17. Tid.

FALUES OF R AND Z FOR 0 HOURS 28th DECEMBER 1922. DATA FOR 1023 TIDE.TABLES FOR KARACHI.

Tides	κ	$V_{0}+u$	$\begin{gathered} \mathbf{Z}= \\ \kappa-\left(\bar{V}_{0}+u\right) \end{gathered}$	H	f	$\begin{gathered} \mathrm{R}= \\ \mathrm{H} \times f \end{gathered}$
	-	\bigcirc		feet	feet	feet
M_{2}	29.3 ${ }^{76}$	1.31 .04	162.72	2.564	1.037	2.659
M_{4}	9.3.55	26209	197.46	$0 \cdot 026$	1.075	0.028
M_{6}	20+ 97	33.13	171.84	0.047	1.115	0.052
S_{1}	175.50	$0 \cdot 00$	175.50	0.088	1.000	$0 \cdot 088$
S_{2}	33.3.13	0.00	323.1.3	0.959	$1 \cdot 000$	$0 \cdot 959$
K_{1}	$46 \cdot 19$	18.3 .30	222.89	$1 \cdot 308$	0.8 .37	1.160
K_{2}	318.75	$187 \cdot 10$	131.65	- 268	0.756	- 20.3
0	46.77	$300 \cdot 28$	9749	0.660	0.815	0.538
N	$277 \cdot 87$	$290 \cdot 62$	34725	0.614	1.037	0.637
$\stackrel{v}{\text { v }}$	$279 \cdot 54$	103.06	176.48	0.143	$1 \cdot 0.37$	0.148
$2 \boldsymbol{\eta}(\mathbf{S S S} \mathbf{S})$		191.98	$320 \cdot 4.3$	$0 \cdot 150$	1.000	- 1150
T	$28+96$	$5 \cdot 63$	279.3.3	0.080	1.000	0.080
P	44.57	$17+01$	$230 \cdot 56$	- 3.395	1.000	$0 \cdot 395$
J	62.97	23.18	$40 \cdot 79$	- 0.080	0.835	$0 \cdot 073$
Q	$48 \cdot 79$	108.86	$299 \cdot 93$	0.141	0.815	0.115
L	296.56	14.3 .45	153.11	$0 \cdot 080$	- 9.931	0.074
μ	267.89	262.09	5.80	0.065	1.075	0.070
118	318.66	131.04	187.62	0.0 .34	1.037	0.035
2SM	$112 \cdot 33$	228.96	243.37	0.019	1.037	0.020
η (SA)	71.60	275.99	155.61	0144	1.000	0.144
2 N	245.05	90.20	154.85	0.092	1.037	0.095
$\mathrm{M}_{2} \mathrm{~N}$	$2.32 \cdot 16$	61.67	170.49	0.049	1.075	0.053
$\mathrm{M}_{2} \mathrm{~K}_{1}$	$76 \cdot 50$	314.34 78.79	122.16	0.043	0.920	0.040
$2 \mathrm{M}_{2} \mathrm{~K}_{1}$	79.41	78-79	0.62	0.020	$0 \cdot 954$	0.019

105. From the above data the form 1 Tid Pred for the settings required on the tidepredicting machine for height only,

Compatation of Form 1 Tid Pred. or for height and time combined, is computed as shown in the sample of the form given on p 86 .

COMPUTATION 0F FORM 1 TID PRED.

Char. I.]
The Tides
1 Tid. Pred.

$\left(360^{\circ}-\Omega\right)=Z$	$\left\|\begin{array}{l} 359^{\circ} \cdot 38 \\ 2 \mathrm{M}_{2} \mathrm{~K}_{1} \end{array}\right\|$	$\underset{116^{\circ} \cdot 63}{2 S M}$	$\begin{gathered} 172^{\circ} \cdot 38 \\ \mathrm{MS} \end{gathered}$	$\stackrel{\text { J }}{\text { J }}$	$\left\lvert\, \begin{gathered} 60^{\circ} .07 \\ Q \end{gathered}\right.$	$\begin{gathered} \mathrm{T} \\ 80^{\circ} \cdot 67 \end{gathered}$	$\underset{L}{206^{\circ} \cdot 89}$	$183^{\nu} \cdot 52$	$\begin{gathered} 354^{\circ} \cdot 20 \\ \mu \end{gathered}$	${ }_{2288^{\circ}}{ }^{\text {a }}$, 35	$\left\|\begin{array}{c} 129^{\circ} \cdot 44 \\ P \end{array}\right\|$	$\underset{12^{\circ} \cdot 75}{N}$	$\left\|\begin{array}{c} 189^{\circ} \cdot 51 \\ \mathrm{M}_{2} \mathrm{~N} \end{array}\right\|$	
$\Delta \mathrm{Z}$	+2.7	-3•3	$+3 \cdot 2$	$+144 \cdot 7$	+218.5	-3.7	+ $144 \cdot 1$	+147.4	+6.4	+7•3	-3.7	+222 2	+225.4	Sum
$\mathrm{Z}+\Delta^{\prime}{ }^{\prime}$	2.08	$113 \cdot 33$	175.58	$103 \cdot 91$	$278 \cdot 57$	76.97	$350 \cdot 99$	330.92	$0 \cdot 60$	235-65	$125 \cdot 79$	$234 \cdot 95$	54.91	Series
	***	0.020	* *	$0 \cdot 073$		0.680	\#***	0.146	* * *	$0 \cdot 203$	* * *	0.637	* *	1.161
R	0.019	***	0.035	* *	0.115	* * *	0.074	* * *	0.070	* * *	0.395	* *	0.053	$0 \cdot 761$
$\begin{aligned} & \log \mathrm{R} \\ & \log \mathrm{M} \end{aligned}$	$\left\lvert\, \begin{array}{c\|c} 2 \cdot 2788 \\ 1 \cdot 2799 \end{array}\right.$	2-3010	2.5441	28633	I.0607	2-9091	$2 \cdot 8692$	1-1703	$2 \cdot 8451$	1-3075	1.5966	1-8041	2-7243	
$\log \mathrm{RM}$	1. 5587	I-5809	1.8240	$0 \cdot 1432$	$0 \cdot 3406$	0. 1830	0. 1491	$0 \cdot 4502$	$0 \cdot 1250$	0.5874	08765	1.0840	$0 \cdot 0042$	
	**	0.38	***	1.39	* **	1.52	***	2.82	* * *	3.87	* * *	$12 \cdot 13$	* *	$22 \cdot 11$
	$0 \cdot 36$	* *	0.67	* * *	$2 \cdot 19$	* *	$1 \cdot 41$	* * *	1.33	* * *	$7 \cdot 53$	* * *	$1 \cdot 01$	14.50
$\log \cos Z$	$0 \cdot 0000$	I-6515	I-9962	İ.8792	1-6981	I-2099	I-950 4	İ.9992	I-9978	I. 8225	I•8029	1-9892	I.9940	
$\log (\mathrm{RM} \cos \mathrm{Z})$	I- 5587	1-2324	I'8202	$0 \cdot 0224$	0.0387	I-3929	$0 \cdot 0995$	$0 \cdot 4494$	0.1228	$0 \cdot 4099$	$0 \cdot 6794$	1.0732	I.9982	
RM $\cos \mathrm{Z}^{+}$	$0 \cdot 36$			1.05	109	$0 \cdot 25$,		$1 \cdot 33$			11.84	,	15.92
RM $\cos 2$	-	$0 \cdot 17$	$0 \cdot 66$				$1 \cdot 26$	2.82	-	2.57	$4 \cdot 78$		1.00	$13 \cdot 26$
$\log \cos S^{\prime}$	1-99.7	$\overline{1} \cdot 5977$	1-9987	$\overline{1} \cdot 3809$	$\overline{1} \cdot 1732$	I. 3531	I.9946	1-9414	$0 \cdot 0000$	1.7515	$\overline{1} \cdot 7665$	1.7591	1.7596	
$\log \left(\mathrm{EAM} \cos \zeta^{\prime}\right)$	T. 5584	I•1786	1. 8227	1. 5241	1. 5138	1.5361	$0 \cdot 1437$	$0 \cdot 3916$	$0 \cdot 1250$	$0 \cdot 3389$	$0 \cdot 6430$	0.8431	1.7638	
M $\cos ^{\prime}$	$0 \cdot 36$			-	0.33	$0 \cdot 34$	$1 \cdot 39$	$2 \cdot 46$	1-33	,	-	,	0.58	6.79
	-	0.15	$1 \cdot 6{ }^{1}$	$0 \cdot 33$	-	,		-	--	$2 \cdot 18$	$4 \cdot 40$	6.97	-	14.69

$\left(360^{\circ}-\zeta\right)=Z$	$\begin{aligned} & \mathbf{M}_{2} K_{1} \\ & 237 \cdot 84 \end{aligned}$	$\begin{aligned} & 204 \cdot 39 \\ & (7 \mathrm{SA}) \end{aligned}$	$\begin{gathered} 97(\mathrm{SsA}) \\ 39 \cdot 57 \end{gathered}$	$\begin{gathered} 168.54 \\ M_{4} \end{gathered}$	$\left\{\begin{array}{c} M_{5} \\ 188 \cdot 16 \end{array}\right.$	$\begin{array}{\|c\|c\|} \hline 184 \cdot 50 \\ \mathrm{~S}_{1} \\ \hline \end{array}$	$\begin{gathered} M_{2} \\ 197 \cdot 28 \end{gathered}$	$\begin{gathered} 36 \cdot 87 \\ \mathbf{S}_{2} \end{gathered}$	$\begin{gathered} \mathrm{K}_{1} \\ 137 \cdot 11 \end{gathered}$	${ }^{262 \cdot 51} 0$	$\left\|\begin{array}{c} 2 N \\ 205 \cdot 15 \end{array}\right\|$		
$\Delta \mathrm{Z}$	+6.9	+3.6	+7.3	+6.4	+9•6	0.0	+3.2	$0 \cdot 0$	+3•6	-0.5	$+81 \cdot 2$	Sum	
$Z+\Delta Z$ ${ }^{2+\zeta^{\prime}}$	$244 \cdot 74$	207.99	46.87	174.94	$197 \cdot 76$	$184 \cdot 50$	$200 \cdot 48$	$36 \cdot 87$	140.71	262.01	$286 \cdot 35$	apper Series	$\begin{gathered} \text { \& } \& \\ \text { lower } \\ \hline \end{gathered}$
R	$0 \cdot 0.41$	$\stackrel{*}{*}$	0.150	* * *	$0 \cdot 052$	***	2.659	*	$1 \cdot 160$	* *	0.095	$1 \cdot 161$	$5 \cdot 317$
	* * *	0.144	* * *	0.028	* * *	0.088	***	$0 \cdot 959$	* *	0.538	* * *	0.761	2.518
$\begin{aligned} & \log R \\ & \log M \end{aligned}$	$\begin{aligned} & \begin{array}{l} 2 \cdot 6021 \\ 1 \cdot 2799 \end{array} \end{aligned}$	I'1584	1-1761	2-4472	$2 \cdot 7160$	$2 \cdot 9445$	$0 \cdot 4247$	I•9818	0.0645	1.7308	2-9777		$+2 \cdot 799$ $\underline{+4 \cdot 199}$
$\log \mathrm{RM}$	1.8820	0.4383	0.4560	I'7271	1. 9959	$0 \cdot 2244$	1-7046	$1 \cdot 2617$	1-3444	1-0107	$0 \cdot 256$		
R M	0.76	* *	$2 \cdot 86$	* * *	0.99	*	$50 \cdot 65$	*	$22 \cdot 10$	*	1-81	$22 \cdot 11$	101.28
	* * *	$2 \cdot 74$	* *	$0 \cdot 53$	* * *	1.68	* * *	$18 \cdot 27$	***	10.25	* **	14.50	$47 \cdot 97$
$\log \cos \mathrm{Z}$	I 7261	$\overline{1} \cdot 9595$	I'8870	1.9912	1.9955	1.9987	I•9799	I'9031	İ8649	I•1151	$\overline{1} \cdot 9568$	Diff. $=a_{2}$	+53.31
$\log (\mathrm{RM} \cos \mathrm{Z})$	1-6081	$0 \cdot 3978$	$0 \cdot 3430$	$\overline{\mathrm{I}} .7183$	1.9914	$0 \cdot 2231$	1-6845	1-1648	$1 \cdot 2093$	0.1258	0.2144	$\frac{a_{2}}{} \frac{12}{12}$	$\begin{gathered} \prime \prime \prime \\ +4 \cdot 198 \\ \hline \end{gathered}$
RM $\cos \mathrm{Z}_{-}^{+}$	0	\bigcirc	$2 \cdot 20$					14.62			-	$15 \cdot 92$	32.74
	0.41	2.50	-1-230	0.52	0.98	$1 \cdot 67$	$48 \cdot 37$		16.19	1.34	1.64	13.26	$86 \cdot 88$
$\log \cos S^{\prime}$	1. 6302	1-9460	$\overline{1} \cdot 8349$	1.9983	$\overline{1} \cdot 9788$	1.9987	$\overline{1} .9716$	$1 \cdot 9031$	$\overline{1} \cdot 8888$	1-1433	1-4495	$\begin{gathered} \text { Diff. } \\ \mathbf{n}_{3} \end{gathered}$	-54.14
$\log (\mathrm{RM} \cos 5)$	¢-5122	$0 \cdot 3843$	0. 2909	1.7254	1.9747	$0 \cdot 2231$	1-6762	1-1648	1-2332	0.1540	1-7071	$\frac{\mathrm{A}_{3}}{1.7}=\mathrm{R}_{2}$	$-4-26$
$\mathrm{RM} \cos \zeta^{\prime} \quad \pm$	0.33	2.42	$1 \cdot 95$. 53	0.04	1-67	47	14.62	\bigcirc	-	0.51	$6 \cdot 79$	$23 \cdot 87$
	0.33	2.42	-	$0 \cdot 53$	0.94	$1 \cdot 67$	$47 \cdot 44$	-	17-11	$1 \cdot 43$		14.69	86.56
Consputed by Checked by													$-62 \cdot 69$ 7 -4.94

106. The scale for the port is entered from table XXI at the ond of Chapter I. The scale factor M is also entered from the same table.

$$
\mathrm{C}=\frac{\mathrm{M} \text {, the scale factor }}{12 \cdot 7}
$$

As the machine is set in millimetres, and the amplitude of the motion given by the machine is double of that required, owing to the rope passing round the pulleys, 12.7 has to be taken as the dividing factor, being one half of 25.4 the number of millimetres per inch. A_{0} is the height of mean sea level above the datum of soundings and is entered from table on page 83. S_{2} is the correction applied to the S_{2} dial pointer on the machine, to change its phase angle from local mean to standard time. These changes in phase have been tabulated in table XXI.
S_{2} is the dial pointer, by means of which the tide-predicting machine is set in phase for the commencement of prediction. It has been selected for setting as well as stopping the machine for time, as it completes two revolutions in one day's movement, and it is thus sufficiently rapid to obtain a good time check, while admitting of the machine being under proper control, so as to stop it at any desired moment.

The entries for ($360-\xi$) or Z are obtained from the data in form 17 Tid. for each tide.
$\Delta \mathrm{Z}$ are the changes in Z after 369 days, which are based on the speed of each tide. These movements are entered in the form for 369 days motion, and they are also tabulated in table XXII, which shows their motion up to the first of every month, in case an intermediate setting is required for any month in the year, if the machine breaks down from any cause. The summation of $(Z+\Delta Z)$ gives ζ^{\prime}. The values of R are entered from form 17 Tid , for each tide.

The remaining entries on the form require no explanation except the quantities $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$.

The sums of the upper and lower series for R having been obtained ; their difference a_{1}, multiplied by C, gives R_{1}, the first check for the height of the pen, above or below mean sea-level, to be verified on the machine after the amplitudes have been set.

The sums of the upper and lower series for RM having been obtained, their difference a_{2}, divided by 12.7 , again gives the value R_{1} as a check on the previous working. The sums of the upper and lower series for $R M \cos Z$ having been obtained, their difference a_{3}, divided by $12 \cdot 7$, gives $\mathrm{R}_{\boldsymbol{i}}$, the check for the height of the pen, above or below mean sea level; to be verified on the machine after the phase angles are set by the dial pointers.

The sums of the upper and lower series for $\mathrm{RM} \cos \zeta$ having been obtained; their difference a_{4}, divided by $12 \cdot 7$, gives R_{3}, the check for height of pen, to be verified on the machine after the curve has been run for 369 days.
107. The form 2 Tid. Pred. is intended for use when the settings on the tide-predicting machine are required, for Computation of purposes of prediction of times of high and low water only, by the Chronograph method.
The form will always be computed after the form l Tid. Pred., for height only, has been completed, and advantage has been taken in the arrangement of the computation to utilise the results already obtained on form 1 Tid. Pred., whenever the entries required are the same.

Crap. I.] The Tides

	$\mathbf{M}_{2} \mathbf{K}_{1}$	7 (SA)	${ }^{2 \eta(S 8 S)}$	M ${ }_{\text {c }}$	M_{6}	S_{1}	M_{2}	S_{3}	K_{1}	0	2N		R
$\left(860^{\circ}-\zeta\right)+90^{\circ}-\zeta_{T}$	327.84	$294 \cdot 39$	$129 \cdot 57$	258.54	$278 \cdot 16$	274.50	$287 \cdot 28$	$126 \cdot 87$	$227 \cdot 11$	$352 \cdot 51$	$295 \cdot 15$	Sum	Sum upper
$\zeta^{\prime}+90^{\circ}=\zeta_{\tau}^{\prime}$	334.74	297.99	136.87	264.94	$287 \cdot 76$	274.50	$290 \cdot 48$	126.87	230.71	$352 \cdot 01$	$16 \cdot 35$	Series	lower
RMT	0.84	**	0.01	* * *	$2 \cdot 15$	***	$36 \cdot 70$	*	$8 \cdot 31$	*	1-26	15.53	64.80
	***	0.00	* **	$0 \cdot 77$	*	$0 \cdot 6$	*****	13.71	**	$3 \cdot 57$	**	8.33	27.01
${ }_{\log }^{\log T}$	$\left\|\begin{array}{l} 0.0416 \\ 1.8820 \end{array}\right\|$	$\left\lvert\, \begin{array}{l\|l} 3.0107 \\ 0.4383 \end{array}\right.$	$\left\|\begin{array}{c} 3 \cdot 3118 \\ 0 \cdot 4560 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \cdot 1611 \\ & 1 \cdot 7271 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0.33 i 2 \\ & 1.9959 \end{aligned}\right.$	$\left\|\begin{array}{l} 1.5740 \\ 0.2244 \end{array}\right\|$	$\begin{aligned} & \overline{1} \cdot 8601 \\ & 1.7046 \end{aligned}$	$\begin{aligned} & 1 \cdot 8751 \\ & 1.2617 \end{aligned}$	$\begin{aligned} & 1.6752 \\ & 1.3444 \end{aligned}$	$\begin{gathered} 1 \cdot 5423 \\ 1 \cdot 0107 \end{gathered}$	$\left\|\begin{array}{c} 1 \cdot 8435 \\ 0 \cdot 2576 \end{array}\right\|$	Dif. $=$	+37.79
\log RMT $\log \cos \zeta_{r}$	$\begin{array}{\|l\|} \hline \mathrm{I} \cdot \theta 236 \\ \mathrm{I} \cdot 9277 \\ \hline \end{array}$	$\begin{aligned} & 3 \cdot 4490 \\ & 1 \cdot 6159 \end{aligned}$	$\begin{aligned} & 3.7678 \\ & 1.804 \mathrm{i} \end{aligned}$	$\left\lvert\, \begin{aligned} & 1 \cdot 884: 2 \\ & 1 \cdot 2482 \end{aligned}\right.$	$\begin{aligned} & 0.8331 \\ & \mathrm{I} \cdot 2519 \end{aligned}$	$\left\|\begin{array}{l} \Gamma \cdot 7984 \\ 2 \cdot 8946 \end{array}\right\|$	$\begin{aligned} & 1.5647 \\ & 1.4728 \end{aligned}$	$\left\lvert\, \begin{aligned} & d \cdot 1368 \\ & f \cdot 7781 \end{aligned}\right.$	$\begin{aligned} & 0.91965 \\ & 1.8330 \end{aligned}$	$\begin{aligned} & 0.5530 \\ & 1.9963 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \cdot 1011 \\ & \mathrm{I} \cdot 6284 \end{aligned}\right.$	$\frac{\text { Dinfi }}{12 \cdot 7}=\mathrm{I}_{3}$	+"\%
$\log \left(\mathrm{RMTT} \cos \zeta_{\tau}\right)$	1.8513	3.0649	3-5719	I-1864	1. 4850	2-6830	1.0375	0.9149	$0 \cdot 7326$	0.5493	1-7295		
BMT $\cos S_{T}{ }^{+}$	0.71	0.00			0.31	0.05	10.90			3.54	0. 54	3.44	19-49
	-		0.00	$0 \cdot 15$		\checkmark		8.22	5.66		-	6.23	20.26
$\log \cos \zeta_{\tau}^{\prime}$	1-9563	1-6715	1.8632	2.9458	1.4843	2.8946	1-543y	1.7781	1. 8016	1-9958	I-9821	Dif, $=$	-0.77
$\log \left(\mathrm{RMT} \cos \zeta_{\tau}{ }^{\prime}\right)$	I-8799	$3 \cdot 1205$	3-6310	2.834	1-8174	2-6930	1-1086	0.9149	0•72i2	0.6488	$0 \cdot 0832$	$\left\lvert\, \begin{aligned} & \text { iniff } \\ & \sqrt{2 \cdot 7} \end{aligned}=\mathrm{B}_{2}\right.$	-0.06
BMT $\cos \zeta_{\tau}{ }^{\prime}$ -	$0 \cdot 76$	0.00			$0 \cdot 66$	$0 \cdot 05$	12.84			$3 \cdot 54$	1.21	11.43	$30 \cdot 39$
	-	-1	0.00	0.07	-	-	-	8.22	$5 \cdot 26$		-	$5 \cdot 48$	19.03
Computed by Checked by												UIIT. $=$	+11.38
													+0゙.80

108. The correction to standard time is entered in minutes, and the correction to the phase of S_{2} is obtaned by dividing this by 2 , or from table XXI. T is an arbitrary factor which is obtained by dividing n the speed component in degrees per m.s. hour by 40 , and was selected with a view to keep the motion of the pen-box on the machine within the limits of the pen-guide.

The entries for $\left(360^{\circ}-\zeta\right)+90^{\circ}$ or ζ_{τ} are obtained from form 1 Tid. Pred. by adding 90° to the values of Z , or from the data given in 17 Tid.

The reason for increasing the phase angles by 90° is as follows.
The height of the tide at any moment is the sum of a number of simple tides such as $\mathrm{R} M \cos (n t-\zeta)$ so that

$$
h=\Sigma \mathrm{RM} \cos (n t-\zeta)
$$

High or low water occurs when this is a maximum or minimum, i.e. when $\frac{d n}{d t}=o$ or $\Sigma \mathrm{RM} n \cos \left(n t-\zeta+90^{\circ}\right)=0$.

Hence if the machine is set with amplitude RMn and phase angle $\zeta+90^{\circ}$ it will draw a curve which will cut the mean level line (corresponding to all components set to zero) at the instants of high and low water. (Actually these amplitudes are multiplied by $\frac{1}{40}$ to bring them within convenient ranges for the machine).

The form 2 Tid. Pred. closely resembles 1 Tid. Pred.

$$
\left(\zeta^{\prime}+90^{\circ}\right) \text { or } \zeta_{\tau}^{\prime}
$$

is the phase angle as altered after having completed 369 days movement and is obtained from the form 1 Tid. Pred. by adding 90° to the value of ζ^{\prime} in form 1 Tid Pred. It is also directly obtainable from form 17 Tid. and table XXII being the value of $[36)^{\circ}-\zeta+90^{\circ}+$ change of movement in 369 days].

RMT is obtained from the RM of form 1 Tid. Pred. by multiplying RM by the factor T.

The remaining entries on the form are quite clear from the form itself, several of the entries being the same as in form l Tid. Pred.

The checks to the pen height R_{1}, R_{2}, R_{3} are obtained in a similar manner to those in form 1 Tid. Pred., except that there is no double check on the value of R_{1}.

Prediction for Riverain Ports.

109. The tide-predicting machine, combining some 24 tidal components, gives accurate results for open coast stations. But for tidal stations situated in rivers at some distance from their mouths or in estuaries having a considerable shallow foreshore, the number of overtides and shallow water components on the machine do not suffice to represent, with the accuracy desired, the actual tidal curve. In addition to the above, the tides are greatly affected by freshets in the rivers, which alter the normal times of high and low water very considerably during several months of the year.

In order therefore to predict the times and heights of tides at Riverain Ports, recourse is had to the method of referring the observed times and heights of tides to the apparent time of moon's transits preceding them by about $1 \frac{1}{4}$ to $1 \frac{1}{2}$ days, for reasons explained in para 112 .

The computation is carried out on form 3 Tid. Pred, the computed times and heights of the semi-diurnal tide being corrected for time, date, declination and parallax, as shown in the form, as well as for corrections taken from the diurnal chart run on the machine for the 8 components $2 \mathrm{M}_{2} \mathrm{~K}_{1}, \mathrm{~J}, \mathrm{Q}, \mathrm{P}, \mathrm{M}_{2} \mathrm{~K}_{1}, \mathrm{~S}_{1}, \mathrm{~K}_{1}$, and O only*.
110. An explanation of the principles on which corrections to the times of high and low-water, found for semi-diurnal tides, are applied from the chart of the diurnal tide is given in the following note by Dr. J. de Graaff Hunter, M. A., Sc. D., F. Inst. P.

Although the semi-diurnal tide is compounded of a number of simple tides of periods slightly differing, yet the semi-diurnal tide of one day may be represented tolerably well by

$$
\mathrm{A}_{2} \cos \left(30^{\circ}, f_{8} h\right)
$$

where A_{2} varies slowly from day to day, but may be considered constant for one day.
h is the number of solar hours measured from last maximum of semidiurnal tide.
f_{2} is a factor, nearly unity, which is the ratio of the average speed of semi-diurnal tides to $30^{\circ} \mathrm{p}$. h.
In a similar way

$$
\mathrm{A}_{1} \cos \left(15^{\circ} f_{1} h+a_{1}\right)
$$

may be supposed to represent the diurnal tide for the day under consideration.

[^6]The problem is to find how far the maximum of the combined tide $\mathrm{A}_{2} \cos \left(30^{\circ} f_{2} h\right)+\mathrm{A}_{1} \cos \left(15^{\circ} f_{1} h+a_{1}\right)$ is delayed after that of the tide $\mathrm{A}_{2} \cos \left(30^{\circ} f_{2} h\right)$.

Now the fundamental idea underlying the principle of the tidal prediction under consideration, is that A_{1} is small compared with A_{2}.

Now the maximum required occurs when :-

$$
\mathrm{A}_{2} \sin \left(30^{\circ} f_{2} h\right) 30 f_{2}+\mathrm{A}_{1} \sin \left(15^{\circ} f_{1} h+a_{1}\right) 15 f_{1}=0
$$

or, dividing by 15 , when :-

$$
2 f_{2} \mathrm{~A}_{2} \sin \left(30^{\circ} f_{2} h\right)+f_{1} \mathrm{~A}_{1} \sin \left(15^{\circ} f_{1} h+a_{1}\right)=0
$$

If we consider the above equation the solution sought is a small value of h since A_{1} is small compared with A_{2} and the maximum occurs when $h=0$ if A_{1} vanishes.

Now as h is small the above equation may be written approximately

$$
2 f_{2} \mathrm{~A}_{2}\left(2 \mathrm{R} f_{2} h\right)+f_{1} \mathrm{~A}_{1} \sin a_{1}+f_{1} \mathrm{~A}_{1} \cos a_{1}\left(\mathrm{R} f_{1} h\right)=0
$$

where K is the radian measure of 15°.
The equation reduces to

$$
\mathbf{R}\left(4 f_{2}^{2} \mathrm{~A}_{2}+f_{1}^{2} \mathrm{~A}_{1} \cos a_{1}\right) h+f_{1} \mathrm{~A}_{1} \sin a_{1}=0
$$

Now R, the radian measure of $15^{c}=\cdot 262$ approximately, and so

$$
h=-\frac{f_{1} A_{1} \sin a_{1}}{\cdot 262\left(f_{2}^{2} A_{2}+f_{1}^{2} A_{1} \cos a_{1}\right)}
$$

Now f_{1}, f_{2} are both slightly less than unity in proportion something like $\frac{1}{8 g}$, and further $f_{1}^{2} \mathrm{~A}_{1} \cos a_{1}$ is small compared with $4 f_{2}{ }^{2} \mathrm{~A}_{2}$, so that we can write :-
$h=-\frac{\mathbf{A}_{1} \sin a_{1}}{\mathbf{A}_{2}}\left(\right.$ putting $\left.\frac{f_{1}}{.262 \times 4 f_{2}{ }^{2}}=1\right)$, expressed in hours of time.
Now $\tilde{A}_{1} \sin a_{1}$ is the value of the height of the cliurnal tide for $15^{\circ} f_{1} h=90^{\circ}$, or $h=6$ hours, measured from the time maximum of the semi-diurnal tide, and A_{2} is $\frac{1}{2}$ the range of the semi-diurnal tide.

Chap. I.]

Correction to the tidal pamphlet, 'The Tides.' (1926).

Chapter I, Page 95, lines 2, 3 \& 5-

Read PO^{\prime} for PN .

Geod. Br. P.O.-20.7-27-300.
111. Ine avove metnou or aeaueng the ume correcuons nas been applied in the method of computation, explained in paras 129 to 132, instead of the old method of dividing the differences between alternate values of the diurnal correction in leights, expressed in hundredths of a foot, by 5 , when the resulting quotient represented minutes of time, as this older method had no theoretical justification. (Vide G.T.S. Vol. XVI p. 341 Part l.)
112. It is necessary now to explain how the computations are carried out in detail.

The method of reduction now employed is, as already stated, to refer the observed times and heights of low-waters, extending over a considerable period, to the apparent times of transits of the moon, preceding the time of high or low-water. The best transit to which to refer the observations can be determined from the values of κ, deduced from the harmonic analysis of the two chief tides of the port in question or of those of an adjacent port. The difference between the values of κ of the mean lunar semi-diurnal tide and that of the mean solar semi-diurnal tide, divided by twice the moon's mean daily synodic motion, will give the mean value of the retardation of the times of high or low-water after the moon's transit.
Thus if we talke the value of $\frac{\kappa \text { for } \mathrm{S}_{2}-\kappa \text { for } \mathrm{M}_{2}}{24 \cdot 38}$
for the port required we obtain values varying from $21^{\text {h }}$ to 37^{h} for L waters and 27^{h} to 40^{h} for H waters and on the average about $l_{4}^{\frac{1}{4}}$ days for the approximate interval after moon's transit to which the predictions have to be referred.

[^7]Chap. I.]
'Thzory and Computation

In the figure
$-\mathrm{A}_{1} \sin a_{1}=\mathrm{PN}$,
(1) H water I is delayed by $\frac{\mathrm{PN}}{\mathrm{AO}}$ hours $=\frac{\mathrm{PN}}{\frac{1}{2} \text { range of semi diurnal tide }}$
(2) L water II is advanced by $\frac{\mathrm{QM}}{\mathrm{A}^{\prime} \mathrm{O}^{\prime}}$ hours $=\frac{\mathrm{QM}}{\frac{1}{2} \text { range of semi diurnal tide }}$
In both these cases PN and QM are positive, being above the mean sea level line. If they fall below, it indicates that the corrections are of opposite sign to the above.
111. The above method of deducing the time corrections has been applied in the method of computation, explained in paras 129 to 132, instead of the old method of dividing the differences between alternate values of the diurnal correction in leights, expressed in hundredths of a foot, by 5 , when the resulting quotient represented minutes of time, as this older method had no theoretical justification. (Vide G.T.S. Vol. XVI p. 341 Part l.)
112. It is necessary now to explain how the computations are carried out in detail.

The method of reduction now employed is, as already stated, to refer the observed times and heights of low-waters, extending over a considerable period, to the apparent times of transits of the moon, preceding the time of high or low-water. The best transit to which to refer the observations can be determined from the values of κ, deduced from the harmonic analysis of the two chief tides of the port in question or of those of an adjacent port. The difference between the values of κ of the mean lunar semi-diurnal tide and that of the mean solar semi-diurnal tide, divided by twice the moon's mean daily synodic motion, will give the mean value of the retardation of the times of high or low-water after the moon's transit.
Thus if we take the value of $\frac{\kappa \text { for } \mathrm{S}_{\mathrm{a}}-\kappa \text { for } \mathrm{M}_{2}}{24 \cdot 38}$
for the port required we obtain values varying from 21^{h} to 37^{h} for L waters and 27^{h} to 40^{h} for H waters and on the average about $1 \frac{1}{4}$ days for the approximate interval after moon's transit to which the predictions have to be referred.

[^8]113. The following table exhibits the approximate interval after the moon's transit to which the predictions for the Indian Riverain Ports, by this method, are referred.

	Interval after moon transit to time of	
	L. Water	H. Water
Basrah	$21^{\text {h }}$	$27^{\text {h }}$
Dublat, (Saugor Island), Hooghly R	$29^{\text {h }}$	$39^{\text {h }}$
Diamond Harbour ...	$32^{\text {h }}$	$36^{\text {h }}$
Kidderpore, (Calcutta) ...	$35^{\text {h }}$	$39^{\text {h }}$
Chittagong	$38^{\text {h }}$	$38^{\text {h }}$
Elephant Point, (Rangoon R) ...	$35^{\text {¹ }}$	$40^{\text {b }}$
Amherst, (Moulmein R) ...	$34^{\text {¹ }}$	$39^{\text {h }}$
Moulmein ...	$37^{\text {h }}$	$40^{\text {h }}$

114. Having determined the best transit to which the times and heights are to be referred, as above, it is possible, by comparisons of previous moon's transits and times and heights corresponding, to obtain monthly means of the approximate intervals between moon's transits and the times of $\mathrm{H} \& \mathrm{~L}$ water, as well as for the values of heights of H and L water corresponding to moon's transits, by grouping the results into 12 groups, i.e.:-those occurring between $0^{\mathrm{h}} 0^{\mathrm{m}}$ and $1^{\mathrm{h}} 0^{\mathrm{m}}$, or $12^{\mathrm{h}} 0^{\mathrm{m}}$ and $13^{\mathrm{h}} 0^{\mathrm{m}}$, into one group; those between $1^{\mathrm{h}} 0^{\mathrm{m}}$ and $2^{\mathrm{h}} 0^{\mathrm{m}}$, or $13^{\mathrm{h}} 0^{\mathrm{m}}$ and $14^{\mathrm{h}} 0^{\mathrm{m}}$, into a second group; and similarly for each of the twelve hours, and then taking out the required means. These means give the average times and heights of H and L water for values of the moon's transit about $0^{\mathrm{h}} 30^{\mathrm{m}}, 1^{\mathrm{h}} 30^{\mathrm{m}}, 2^{\mathrm{h}} 30^{\mathrm{m}}$, etc. If the means of the moon's transits do not equal 30 m exactly, they are made to do so, the times and heights dependent on them being corrected accordingly. Having now the values for each hour of moon's transit, viz. at $0^{\mathrm{h}} 30^{\mathrm{m}}, 1^{\mathrm{h}} 30^{\mathrm{m}}$, etc.; the intermediate values of times and heights are obtained by interpolation for each 10^{m} of the moon's transit ; i.e.:five values being inserted between each of the 12 original quantities.
115. As the effect of freshets on the tides of Riverain Ports in India varies considerably from month to month, but the same effects occur with fair regularity from year to year in the same months, the observations for a considerable period of years are taken separately month by month ; i.e.:-all January results together, etc; and by grouping the hourly values for each separate month for $0^{\mathrm{L}} 0^{\mathrm{m}}$ and $1^{\mathrm{h}} 0^{\mathrm{m}}$, or 12^{h} and 13^{h}, ete.; as above, monthly lists of mean values are obtained.

Chap. I.]

Theory and Computation

116. In order to obtain good values, it was necessary to treat the observations extending over a considerable period of years in this manner, as the number of observations in any one month, dependent on a certain hour of the moon's transit, was insufficient to give reliable mean values. It may be here remarked that it is not necessary to find the time of moon's transit for the particular place in question, and, in practice, it has been the rule to refer the times and heights to the transits at Greenwich, which are given in the Nautical Almanac. In the predictions, the Green wich transits are again used, whereby a saving of time is effected both in the reductions, and the actual predictions.
117. The monthly mean values of heights and times, corresponding

Plotting of monthly mean values on charts. to the apparent times of moon's transit, so obtained, were then brought in terms of mean times of transit with a view to plotting them on charts. The values for height were plotted without alteration. In the case of the times however, the curves were drawn with the monthly mean values somewhat modified, so as to give the curves an easier gradient and enable the values to be read with more precision. For this purpose the monthly mean values relating to the mean times of transit were subtracted from the times of moon's transit in the case of low-waters and vice versa in the case of high-waters. With these residual values, after applying the correction to standard time, when necessary, the plotting of the curves was carried out. These residuals were takeu to represent the value for the 15th day of each particular month, so that no smoothing was required between the values obtained for the end of one month and the begining of the next. Two sets of charts were prepared, one for high-water, comprising δ separate charts, for heights and times of high-waters, and another similar 8 charts, for heights and times of lowwaters. Each chart exhibits 4 curves, covering a period of three months, and one set covers a whole year of heights or times of high or low-waters. From these monthly charts, entries are made in form 3 Tid. Pred. according to dates as explained in para 126 et seq.
118. The next step in the work is to ascertain the corrections due

Corrections for lunar parallax and declination. to the lunar parallax and the lunar declination.

The tables, given on pages 337 to 339 , and, rearranged and enlarged, on pages $3+2$ to 352 of Chapter 8, Part I. G. T. S. Volume 16, are strictly speaking for the London Docks, but can be used, for the semi-diurnal tides of any port, for the corrections for times of high-water without alteration.

Chap. I.]
The Tides

For heights however, corrections are applied in proportion to the ranges of the semi-diurnal tides at London and those of the port in question. The corrections for the times of low-water at the London Docks have not been determined, but have been assumed the same as for the high-water and have been so used in the prediction of the times of low-waters for the Indian Riverain ports. The corrections for the heights of low-waters will be of opposite sign to those for high-waters. The times of low-water in the reductions are referred to the same moon's transit as the succeeding high-water, as the low-waters precede the high-waters by a shorter interval than that between the low-water and the prenious high-water. At Riverain ports, which are at a considerable distance from a river's mouth, the high-water succeeds the low-water by a few hours only, the time being coincident at the place where the tidal flow ceases.
119. Charts have also been prepared for corrections to time and

Charts for parallax and declination corrections. height for moon's horizontal parallax and declination, corresponding to tables 1,2 and $\overline{0}, 6$ given in G. T. Survey Vol. 16 pages $312-345$ and $350-351$. From these latter charts, which are in apparent time, the corrections to mean time for each day in the year can be taken out and entered as described in the footnote to form \mathbf{A}_{2} in para 122. The corrections from these charts would have been more easily obtainable, had these charts been made to correspond with mean time. It may be found impler in future to construct fresh charts corresponding to mean time, or to work in apparent time throughout, either from charts, or by means of tables, (as explained in para 124).
120. The corrections to time taken from these charts are the actual corrections required, but in the case of the corrections

Mrltiplying factors for height corrections. to height, the corrections have to be multiplied by an appropriate factor before entry.
A note to this effect is given in the heading of each chart. As the figures for time corrections on the charts are in black, and those for height are in red, there is no likelihood of confusion.

The appropriate factors by which the height corrections have to be multiplied are :-

Ohap. r.] Theory and Computation

Name of port.	Factor for H. Water.	Factor for L. Water.
Dublat, (Saugor Island), Hooghly R	$1 \cdot 2$	$-1 \cdot 2$
Diamond Harbour	$1 \cdot 4$	$-1 \cdot 0$
Kidderpore, (Calcutta) ...	1.2	-0.3
Chittagong ...	$1 \cdot 0$	$-0 \cdot 5$
Elephant Point, (Rangoon R)	$1 \cdot 6$	-1.4
Rangoon	1.4	-0.9
Amherst, (Moulmein R) ...	1.8	$-1 \cdot 8$
Moulmein	$1 \cdot 6$	-0.2*
Basrah	$0 \cdot 3$	$-0 \cdot 2$

121. It is now necessary to draw up certain lists to facilitate the entries in the computation form 3 'Iid Pred. The form A_{1} is first prepared, as per the sample given below, with data from the Nautical Almanac, month by month throughout the year for prediction, and starting at least 2 days before the year commences, as the predictions are referred to transits $1 \frac{1}{4}$ or more days previous.

Form A_{1} is used for reference in the subsequent computations for all the Riverain ports.

To simplify the work, the deelinations are calculated for the nearest hour of moon's transit, and the values entered to the nearest tenth of a degree. Also the values of horizontal parallax for noon or midnight from the Nautical Almanac are entered, if the time of transit is within 3 hours of noon or midnight, as the case may be. The means of consecutive values for noon or midnight are entered, if the time of transit lies between 3 and 9 hours of noon or midnight, the values being kept to the nearest second. The values of declination and parallax are computed for alternate times of moon's transit only.

[^9]Form $A_{1}, 1925$.

122. From form λ_{1} it is then necessary to enter the corresponding

Form A_{2}.
corrections for declination and parallax from the charts prepared for this purpose (vide para 119), in the form A_{2}, of which a sample is given below. The entries are made as shown in the columns for time and height corrections.

[^10]JHAP. I.]
Theory and Computation
Form $\mathrm{A}_{2}, 1925$.

*Colnma (3). E is n correction which is necessary, as the argmment adopted in readng the charts is mean instead of apparent time. It is obtained by entering the values orresponding to the npparent time, givon in form A_{1}, for every loth day. By comparing hese with the mean time corrections, it is possible to grade the differences, and enter olumn E :-for instance, taking the sum of $+2 \cdot 4+0 \cdot 1$ marked \dagger above, we obtain $+2 \cdot 5$, which compared with $+2 \cdot 6$ morked *, gives the entry in Column \mathbf{E} as $+0 \cdot 1$ for annary lst. Similarly, at the end of 10 days, by comparing sum of quantities $+0 \cdot 2$, +0.2 marked \dagger, we obtain +0.4 , which compared with +0.8 , marked ${ }^{*}$, given the ntry in Colamn E for 10th January ns $+0 \cdot 4$. The difforences are then graded back moothly between +0.4 and +0.1 , as abown in Column \mathbb{E}.

124. An alternative method of entering the parallax and declination corrections similar to that adopted by Mr. Brookes of the National Physical Laboratory, Teddington, England is here given. The working is carried out in apparent time direct, the entries being made from Tables 1 to 7 , given in G. T. Survey Volume XVI, p. 342 et seq. These tables are in apparent time, and the working is less cumbrous than that from the charts now in use, which are based on mean, instead of apparent time. If these charts are reconstructed to correspond with mean time, the method of entry of the form below would be suitable, and its use would obviate the preparation of forms $A_{1}, A_{2} \& A_{3}$ as at present. The form would be entered as shown :-

$\begin{aligned} & \text { Date } \\ & 1913 \end{aligned}$	Transits of moon in mean time in order from N.A.	Eqn of time.	Appt. time of 1400n's; transit	Decln. of moon at mean time of transit	Horl. parallax at apparent time of transit	Corrections to time Minutes			Sum of tables $1 \cdot 2 \cdot 3$. Corrn. to time of H\&L water.	Corrections to height Feet.			$\begin{gathered} \text { Sum } \\ \text { of } \\ \text { tables } \\ 5 \cdot 6 \cdot 7 \end{gathered}$	Sum of tables 5.6.7 \times factor given on p. 340 Vol. XVI. Part I. Corrn. to height of $\mathrm{H} . \& \mathrm{I} . \mathrm{W}$.
						Corrn. Table 1	Corrn. Table 2	Corrn. Table 3		Corrn. Table 5	Corrn. Table 6	Corrn. Table 7		
	h. m.	m.	h. m.	。										
Dec. 301912)														
Dec. 311912$\}$	Entries for refer th	didese days	previous y	${ }_{4}^{2}$ have to bays previd	e made so as							'00		
Jeny. 11913 ...	$7 \quad 25.5$	-3.7	729	15.5	57-17	-0	-1	-7		-02	+.06	-		
	$19 \quad 49 \cdot 6$	-3.9	$19 \quad 46$			-6*	\%	-15^{*}	
Jany. 2 ...	$\begin{array}{rr}8 & 14 \cdot 2 \\ 20 & 39 \cdot 4\end{array}$	-4.1 -4.4	$\begin{array}{rrr}8 & 10 \\ 20 & 35\end{array}$	20.f;	$56 \cdot 40$	+3	+1 $+\ldots$	$\begin{array}{r}-7 \\ \hline . .\end{array}$	$\xrightarrow{-3}$	-. 26	-. 08	$\stackrel{\square}{\square}$	-.34 $-.51^{*}$	
Jany. 3	9 $5 \cdot 2$ 21 31.6	-4.9 -4.9	$\begin{array}{rrr}9 & 1 \\ 21 & 27\end{array}$	24.6	56.70	+6	+2	-6	+2 $+3^{*}$	-. 48	-. 20		-.68 $-.70{ }^{*}$	

[^11]125. Method of entering form 3 Tid Pred.

Form 3 Tid Pred.
The prediction of high and low-waters are both carried out on this form, high being treated separately and low separately.

In cols. $1 \& 2$ of the form are entered the civil dates and mean time of moon's transit at Greenwich from form A_{3}.
126. From the monthly time curve, prepared as described in para 117, are entered the values in col. 3 of the form. Also, the date of the tide being calculated by adding the approximate time interval in hours, (vide para ll3), to the time of moon's transit in col. 2, the entry is made in col. 9. Again, from the monthly height curve, the values are entered in col. 10 of the form.
127. In reading the monthly time and height charts, the values corresponding to each date are interpolated between the two consecutive monthly curves described in para 117, which give the values for the 15 th days of these months. The interpolations are made by taking proportional parts as follows :-

> Date of month Proportional parts

15	-
18	$0 \cdot 1$
21	0.2
24	0.3
27	0.4
30	0.5
3	0.6
6	0.7
9	0.8
12	0.9
15	1.0

The values read from the time charts are added to the time of moon's transit in the case of high-waters, and subtracted therefrom in the case of low-waters, in order to obtain the approximate predicted times of high and low-waters. In order to minimise the work, it has been decided to read values for time and height corresponding to alternate times of transit only, and to interpolate for the intermediate values by taking

Chap. I.]
Theory and Computation
the mean. In the case of heights, no further corrections are made to the interpolated mean values, but in the case of times, the mean of alternate quantities is not sufficiently correct, and a correction for the 2nd. differences of monthly mean values is accordingly applied and entered in col. 6 , from charts prepared for these second differences, (Δ_{2}). The charts for 2nd. differences are prepared by taking the monthly values corresponding to hours of moon's transit modified for 49 minutes, the mean interval between alternate times of transit, $\left(-\frac{1}{8}\left(\frac{4}{6} \frac{9}{0}\right)^{2} \Delta_{2}\right)$. The correction factors for the actual intervals between alternate values have been calculated for 42 to 64 minutes, and are shown on these charts. The values measured from the charts are multiplied by the factors, and entered in column 6.
128. The declination and parallax corrections, worked out on form A_{3}, are now entered in cols. $4 \& 1 \mathrm{ll}$ of form 3 Tid Pred., those for height being multiplied by the factor for the port before entry.

These can also be worked out by the alternative method given in para 124.

The summation of cols. 2, 3 and 4 , gives the entry to be made in col. 5 , giving the approximate mean time of the tide, to which cols. 6 and 7 are afterwards added, in order to get the predicted time in col. 8.
129. A celluloid scale, specially prepared for the purpose on the 24

Reading the Dinenal Chart. hours system on the scale of either 3 or 4 inches to 1 foot, is then taken for reading the Diurnal Chart. Each of these celluloid scales consists of a horizontal and a vertical scale joined at right angles at the centre, or mean sea level.

The horizontal scale is prepared on the 24 hours system, and each length of 3 inches on it represents a full day. It is subdivided to show single hours.

The vertical scale, which is at riglt angles to the horizontal scale described above, actually has 2 scales on it. The one on the left gives the height correction to be entered in col. 12. The other scale, on the right, is in a position to read 6 hours to the right of the left-hand scale, and therefore, without moving the scale, enables the curve to be read at a different point from that at which the heights were read, and approximately 6 hours away from the time of maximum of the semi-diurnal tide, as required by the theory already explained in para 110 .
130. The horizontal scale is set in position to correspond with the arguments of approximate mean time and date given in cols. 5 and 9 of the form respectively. In setting the scale for reading, as
above, it is best to place the horizontal scale to correspond with the mean sea level line first, and afterwards to shift it to the approximate time at which the reading has to be taken. The corrections for height and time are then read.

The height correction is entered directly in col. 12, being positive, if measured above mean sea level, and negative, if below.

The time correction, as already explained, is read without moving the scale at a point nearly 6 hours later on the curve, and allowance has been made for this in the width of the scale. The reading has to be divided by half the semi-diurnal range of the port, and the result is then entered as the time correction in col. 7.

Both height and time corrections are read from the Diurnal Chart so as to correspond to alternate approximate times of tide in col. 5, and the intermediate values are interpolated between them.
131. Half the semi-diurnal range, the divisor required, is now obtained practically, by taking half the difference in height between the high and low-waters entered in col. 10.
132. The time corrections, when entered in col. 7, are allotted correct signs in accordance with the following rules :-
'Time corrections, if measured above mean sea level, are positive for high-water and negative for low-water.

Time corrections, if measured below mean sea level, are negative for high-water and positive for low-water.

This follows from the theory already explained in para 110.
13:3. The columns of the form, now having all been entered, the summation of cols. 10,11 aud 12 gives the entry to be made in col 13.

This completes the computation on form 3 Tid Pred., of which a sample showing the entries made in the varions columns is given overleaf.

The prellictions for time and height are now copied from cols. 8, 9 and 13 of 3 Tid Pred. into one of the forms $5,6,7$ or 8 Tid Pred., according to the port in question, and, when completed, the predictions are ready for the press.

[^12]Port
Approx. Interval

The Tides

The port of Bassein, though actually a Riverain port, is not treated as such for purposes of prediction. Predictions for Bassein are made by means of the tidal curve run on the machine, in the same manner as for an open sea port, the following corrections being applied to the times of high and low-water.

Theory and Computation

For Bassein the following data are used.

Component	κ	H	$\left(V_{0}+\mathrm{u}\right)$
M_{2}	$48 \cdot 3$	$2 \cdot 294$	As for
M_{4}	$325 \cdot 7$	$0 \cdot 241$	Diamond
M_{6}	237-0	$0 \cdot 097$	Island
S_{1}	$135 \cdot 6$	$0 \cdot 066$	"
S_{2}	$90 \cdot 9$	$0 \cdot 754$	"
η	152.3	1.86\%	"
2η	$322 \cdot 3$	0.570	"
0	$39 \cdot 2$	0.186	"
K_{1}	$47 \cdot 6$	$0 \cdot 374$	"
K_{2}	107.6	0-168	"
P	$50 \cdot 6$	0.127	"
N	$44 \cdot 9$	0.359	"
L	$52 \cdot 6$	0.163	"
ν	$1 \cdot 5$	0-138	"
T			"
μ	178.1	$0 \cdot 266$	"
, J	$239 \cdot 2$	$0 \cdot 015$	"
Q	$48 \cdot 5$	0.011	"
MS	$10 \cdot 5$	$0 \cdot 178$	"
2 SM	$300 \cdot 4$	$0 \cdot 077$	"
2 N	$337 \cdot 1$	0.116	"
$\mathrm{M}_{2} \mathrm{~N}$	315-8	$0 \cdot 079$	"
$\mathrm{M}_{2} \mathrm{~K}_{1}$	301.4	$0 \cdot 095$	$"$
$2 \mathrm{M}_{2} \mathrm{~K}_{1}$	258.5	0.073	"

Table I.-For converting Decimals of a Degree into Minutes and Seconds.

2

Example.-Required the value of $0^{\circ} .875$ in minutes and seconds From Part l $\quad . . \quad \cdot 8 \quad=48^{\prime}$

$$
\begin{aligned}
& \because \quad 2 \quad .075=4^{\prime} 30^{\prime \prime} \\
&-875=52^{\prime} 30^{\prime \prime}
\end{aligned}
$$

Char. I.]
Theory and Computation

Table II.-For converting Minutes and Seconds into Decimals of a Degree.

Char. I.]
The Tides

Table IIl.-Values of p the Mean Longitude of the Moon's Perigee, (the π of the computation forms), for every year from 1850 to 1949.

Year	p or \quad \%	Year	p Or π	Year	p or π	Year	p or π
	0		0		\bigcirc		0
1850	99.7293	1875	36.9609	1900	334.1913	1925	271.4236
51	$140 \cdot 3918$	76	$77 \cdot 7348$	1	14.8540	26	312.0860
53	18I-1657	77	$118 \cdot 3973$	2	55'5166	27	352.7484
53	$221 \cdot 8283$	78	159.0598	3	96-1793	28	33.5823
54	262.4908	79	199.7223	4	$136 \cdot 9533$	29	7/4-1848
1855	303.1534	1880	$240 \cdot 4962$	1905	177.6160	1930	$114 \cdot 8473$
56	$343 \cdot 9273$	81	281-1587	6	218.2786	31	155.5098
57	24.5899	82	321-8212	7	$258 \cdot 9413$	33	196. 2837
58	65.2524	83	2.4837	8	299.7853	33	$236 \cdot 9462$
59	105.9149	84	43.2576	9	$340 \cdot 3779$	34	277-6087
1860	146.6889	1885	83.9200	1910	$2 \mathrm{r} \cdot 0406$	1935	318.2718
61	187.3514	86	12.4 .5825	11	61:7032	${ }^{36}$	$359 \cdot 0450$
61	228.0139	87	165.2450	13	102.4772	37	39.7074
63	268.6765	89	206.0189	13	143.1399	38.	$80 \cdot 3698$
64	300.4504	89	$246 \cdot 6814$	14	183.8025	39	121.0321
1865	350.1129	1890	287.3439	1915	224.4651	1940	161.8059
66	30.7755	91	$328 \cdot 0063$	16	265.2392	41	202.4682
67	71.4380	92	$8 \cdot 7802$	17	305.9018	42	$243 \cdot 1306$
68	112.3119	93	$49 \cdot 44^{2} 7$	18	$346 \cdot 5644$	43	283-7929
69	152.8744	94	$90 \cdot 1051$	19	27.2270	44	324-6667
1870	193.5369	1895	$130 \cdot 7676$	1920	68.0010	1945	$5 \cdot 2990$
71	234-199.4	96	$171 \cdot 5415$	21	$108 \cdot 6637$	46	45-8914
72	274.9734	97	212.2039	21	149.3263	47	86.5637
73	315.6359	98	$252 \cdot 8664$	23	189.9989	48	127-3274
74	356-2981	99	293.5280	24	230.7611	49	$167 \cdot 9898$

1. These values are for January 0 (i.e., noon December 31st of preceding year), except in the case of leap-years, when the values are for 0 hour January lat.
2. The valnes given in the above table require $0^{\circ} 136$ to be added to give the true values of p or π, (see page 36, Preface to Hansen's Tables), bat us the form for the compntation of tidal observations has been ennstracted, showing the constant $0^{\circ} \cdot 136$ to be added, it bas been thonght adrisable not to make this correction in above table.

3 The valnes from 1924 onwards depend on the new formula given in para 87.
These new values are shown in italics in the above table. The values for Jnn. 1 compated by the new formala were found in defect of those pablished in the old edition of the table after addition of $0^{\circ} \cdot 136$ und one day's motion at $0^{\circ} \cdot 111+14$ to convert the latter to Jan. 1 instead of Jan. 0 , by $0^{\circ} \cdot 00159$ in $1923,0^{\circ} .00324$ in 1936, and $0^{\circ} \cdot(0608$ in 1949.

The tabnlar values for Jan. 0 from 1924 onwards were accordingly corrected by interpolation from the above. and still require the constant $0^{\circ} \cdot 136$ added.

The rulues may also be obtained from the N. Almannc, which is usualiy available in time for any particnlar year's compatations.

Table IV.-Number of Days from January 0.

Month.		Common jenr.	Leap-year	Month.		$\begin{aligned} & \text { Common } \\ & \text { year. } \end{aligned}$	Leap-jear
Jenuery o		0	-1	July o		181	181
February o	\ldots	31	30	August o	...	212	212
March O	\ldots	59	59	Septernber 0	...	243	243
April -	\ldots	90	90	October 0	\ldots	273	273
Mey 0		120	120	November 0	..	304	304
June 0		151	15\%	December o		334	334

Chap．I．］
Theory and Computation

Table V．－Value of Movement of p or π for 1 to 366 Days， at $0^{\circ} \cdot 11140408031$ per mean solar day．

	π	晏。	π	$\stackrel{\dot{\Phi}}{\text { ¢ }}$	π	$\stackrel{\dot{m}}{\text { ¢ }}$	$\boldsymbol{\pi}$	蛔	π	离	π
	$\bigcirc \cdot 1$	62	6． 20705	123	$13 \cdot 70270$	184	20.49835			306	4．08065
2	$0 \cdot 22281$	63	$7 \cdot 01846$	124	${ }_{13} \cdot 81411$	185	20.60975	245	27.40540	306 307	34．20105
3	$0 \cdot 33421$	64	$7 \cdot 12986$	125	1392551	186	20．72116	247	2\％－51181	308	$34 \cdot 31246$
4	0.44562	65	$7 \cdot 24127$	126	14.03691	187	$20 \cdot 83256$	248	27．62821	309	34.42386
5	0.55702	66	$7 \cdot 35267$	27	14．14832	188	20.94397	249	27．73962	310	$34 \cdot 53526$
6	0.66842	67	7.46407	128	14．25972	189	$21 \cdot 05537$	250	27.85102	II	34．64667
7	0.77983	68	7.57548	129	14.37113	194	21－166\％8	251	27.9624^{2}	312	34．75 ${ }^{\text {a }}$
8	0.89123	69	7.68688	130	14.48253	191	21－27818	252	28.07383	313	34．86948
9	－$\cdot 00264$	70	7.79829	131	14.59393	192	21.38958	253	$28.18: 23$	314	34．98c88
10	1．11404	71	$7 \cdot 90969$	132	14．70534	193	$21 \cdot 50099$	254	28.29604	315	35－c9229
11	$1 \cdot 22 \leq 44$	72	8.02109	133	14.81674	194	21．61239	255	28.40804	316	$35 \cdot 20369$
12	$1 \cdot 33685$	73	$8 \cdot 13250$	134	14.92815	195	21.72380	256	28.51944	317	$35 \cdot 31509$
13	$1 \cdot 44825$	74	8．24390	135	15.03955	196	$21 \cdot 83520$	257	28.63085	318	35．42650
14	$1 \cdot 55966$	75	$8 \cdot 35531$	136	$15 \cdot 15095$	197	21.94660	258	$28 \cdot 74225$	319	35.53790
15	1．67106	76	$8 \cdot 46671$	137	15．26236	198	22.05801	259	28.85360	320	35.64931
16	$1 \cdot 78247$	77	$8 \cdot 57811$	138	$15 \cdot 37376$	199	22．16941	26c	28．96506	32 I	35－76071
17	$1 \cdot 89387$	78	$8 \cdot 68952$	139	15.48517	200	22.28053	261	29.07646	322	35．87211
18	$2 \cdot 00527$	79	$8 \cdot 80092$	140	15.59657	20	22.39222	262	29．1－787	323	35.98352
19 20	$2 \cdot 11668$ 2.22808	80	$8 \cdot 91233$	141	15．70798	202	22．50362	263	29.29927	324	36.09492
20	2．22808	81	$9 \cdot 02373$	142	15．81938	20	22.61503	26_{4}	29.41068	325	36－20633
21	2.33949	82	9．13513	143	15.93078	204	22.72643	265	29.52208	326	$36 \cdot 31773$
22	2.45089	83	$9 \cdot 24654$	144	16.04219	205	22.83784	260	29.63349	327	36．42913
23	$2 \cdot 56229$	84	$9 \cdot 35794$	145	$16 \cdot 15359$	206	22.94924	267	29．74 89	328	36.54054
24	2.67370	85	9.46935	146	16.26500	207 204	$23 \cdot 06064$ $33 \cdot 17205$	268	29.85629	39	36.65144
25	$2 \cdot 78510$	86	$9 \cdot 58075$	147	16．37640	2 CB	23．17205	269	29．96770	330	36．76335
26	$2 \cdot 89651$	87	9.69215	148	16.48780	209	$23 \cdot 28345$	270	30．07910	331	36．87475
27	$3 \cdot 00791$	88	$9 \cdot 80356$	149	$16 \cdot 59921$	210	23.39486	271	30－19051	332	36.98615
28	3－11931	89	9.91496	150	$16 \cdot 71061$	21	$23 \cdot 506211$	272	$30 \cdot 30191$	333	$37 \cdot 09756$
${ }^{29}$	3．23072	90	10－02637	151	16．82202	21	$23 \cdot 61766$	273	30．41331	$33:$	$37 \cdot .0896$
30	$3 \cdot 34212$	91	10．13777	152	16．93342	213	23．72907	274	30．52472	335	37－32037
31	3.45353	92	10.24918	153	17.04482	21	23.84047	275	$30 \cdot 63612$	336	$37 \cdot 43177$
32	3.56493	93	10036058	154	17.15623	215	23.951 .8	276	$30 \cdot 74753$	337	$37 \cdot 54317$ 37
33	3.67633	94	10－47198	155	17.26763	216	24．06328	277	$30 \cdot 85493$	338	$37 \cdot 65458$
34	$3 \cdot 78774$	95	100．58339	156	17．37904	217	24．17469	278	30．97033	339	$37 \cdot 76598$
35	$3 \cdot 89914$	96	10．69479	157	$17 \cdot 49044$	218	24．28609	279	$31 \cdot 08174$	340	37－87739
36	$4 \cdot 01055$	97	$10 \cdot 80620$	158	17．60184	219	24．39749	280	31－19314	341	37.98879
37	$4 \cdot 12195$	98	10091760	159	17．71325	220	24.50890	281	$31 \cdot 30455$	342	$38 \cdot 10020$
38	4.23336	99	11.02900	160	17.82465	221	$24 \cdot 62030$	282	31．41595	343	$38 \cdot 21160$
39	$4 \cdot 34476$	\％o	11．14041	161	$17 \cdot 93606$	222	$24 \cdot 73171$	283	31．52735	344	${ }^{38 \cdot 32300}$
40	4.45616	101	11－25181	162	18．04746	223	24．84311	284	31－63876	345	38－43441
41	$4 \cdot 56757$	102	11．36322	163	18.15887	224	24.05451	285	31．75016	346	$38 \cdot 54581$
42	$4 \cdot 67897$	103	11.47462	164	$18 \cdot 27027$	225	25－06593	888	31．86157	347	38.65722
43	4.79038	104	11.58602	165	$18 \cdot 38167$	226	25．1732	287	31＇97297	$34{ }^{8}$	$38 \cdot 76862$
44	$4 \cdot 90178$	105	II 69743	166	18.49308	227	$25 \cdot 28873$	$2: 8$	$32 \cdot{ }^{-18438}$	349	$38 \cdot 88002$
45	5.01318	106	11－80483	167	18.60448	228	$25 \cdot 40013$	289	32－19578	350	$38 \cdot 99143$
46	5．12459	107	11.92024	168	18．71589	229	25．51153	290	32－30718	351	$39 \cdot 10283$
47	$5 \cdot 23599$	108	12．03164	169	$18 \cdot 82729$	230	25.62204	291	$32 \cdot 41859$	352	39.21424
48	5.34740	109	12．14304	170	18.93669	231	25．73434	292	72－52999	353	39．32564
49	5.45880	110	12.25445	171	19.05010	232	$25 \cdot 84575$	203	$32 \cdot 64140$	354	39．43；04
50	$5 \cdot 57020$	111	$12 \cdot 36585$	172	19－16150	233	25.95715	294	32－75280	355	39．54845
51	$5 \cdot 68161$	112	12．47726	173	19．27291	234	26.06855	295	32－86．120	356	39.65985
51 53	5.79301	113	$12 \cdot 58866$	174	19．38431	235 136	$26 \cdot 17996$ $26 \cdot 20136$	296 297	$32 \cdot 97561$ $33 \cdot 08701$	357 358 358	$39 \cdot 77126$ $39 \cdot 88266$
54	${ }_{6}^{5.90442}$	114	12．70007	175	19．40571	236	26．29136	297	$33 \cdot 88701$	358	39•88266
5	6－12722	115	$12 \cdot 8147$ 12.92287	176 177	$19 \cdot 60112$ $19 \cdot 71852$	237 238	$26 \cdot 40277$ $26 \cdot 51417$	298 299	$33 \cdot 10842$ $33 \cdot 30082$	359 360	$39 \cdot 99406$ $40 \cdot 10547$
56	$6_{6.23863}$	$1{ }^{17}$	13.03428	178	19．82993	239	26.62558	300	33．42132	361	$40 \cdot 21687$
${ }_{58}^{57}$	6.35003	118	$13 \cdot 14568$	179	19.94133	240	26.73698	301	3． 3 ［5263	362	$40 \cdot 32828$
	6.46144 6.57284	119	13.25709 13.36949	ı80	$20 \cdot 05273$	241	26．84838 ${ }^{26}$	302	33． 4.103	363	40．43968
69	6.7684 6.68424	120	13.36849 13.47989	181 182 182	$20 \cdot 16414$ 20.27554	242 243	$26 \cdot 05979$ 27.07119	303 314	$33 \cdot 75544$ $33 \cdot 86684$	364 365	$40 \cdot 55109$ 40.62489
61	6.79565	122	13.49130	183	$20 \cdot 2754$ 20.38695	244	${ }_{27} 18260$	305	－33．97824	366	40．77389

Table VI.-Value of the Movement of p or π for differences of Longitude Greenwich.

Difierence of Longitude	Value of π	Actual valucs of π corresponding to Degrees in Column I	Difference of Longitude	Value of π	Actual values of π corresponding to Degrees in Column I
-	-	\bigcirc	\bigcirc	-	-
$0 \cdot 000$		-0000	88.865	-028	-0275
1.616		-0005	$92 \cdot 097$		-0285
4.847	-001	. 0015	95.328	- 029	-0295
8.079	-001	.0025	$08 \cdot 560$	-0,30	.0305
	-003			-031	
$11 \cdot 310$	-004	-0035	1017901	.032	-0315
14.542		. 0045	105.023		-0325
17.713	-005	. 0055	108.254	-033	-0335
	-006			-034	
$21 \cdot 005$		-0065	1119880		-0345
24.236	-007	. 0075	114.717	-035	-0355
	-008			-036	
27-467		-0085	117.949		-0365
$30 \cdot 699$	-009	. 0005	121.180	-037	-0375
	- 010			-038	
$33 \cdot 930$		-0105	124.451		-0385
37-163	-011	-0115	$127 \cdot 643$	-039	-0395
	-012			. 040	
10.393		-0125	$130 \cdot 874$		-0405
43.625	.013	.0135	134.106	. 041	-0415
	- 014			. 043	
46.856		-0145	$137 \cdot 337$. 0425
$50 \cdot 088$	-015	-0155	$140 \cdot 569$	-843	-0435
	-016			-044	
53.319		-0165	$143 \cdot 800$		- 0445
56.531	-017	$\cdot 0175$	$147 \cdot 033$	- 045	-9459
	-018			. 046	
39.782		-0185	$150 \cdot 363$		-0465
63.014	-019	-0195	153.495	. 047	-0475
66.245	. 020	. 0205	156.726	-. 048	. 0485
	-021			. 049	
69.477		. 015	159.958		-0495
72-708	$\cdot 022$. 0225	163.189	-050	-0505
$75 \cdot 939$. 013	. 0335	$166 \cdot 421$	-051	. 0515
	. 014			. 051	
19•171		.0345	169.652		-0525
89.402	-025	. 0255	$172 \cdot 884$	-053	.0535
89.634		. 0265	176.115	-054	-0945
80.865	$\cdot 027$.0275	$179 \cdot 346$	- 055	-0535
			182.578	-056	-0565

Oorrection for L. Longitude - , for W. Longitnde + ,

Crap. I.J

Theory and Computation

Table VII.-Products of Augmenting Factors $\mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}$, and \mathbf{R}_{4} multiplied by I to 99 .

126

Chap. I.]
The Tides

Table VIII. - Products of $S_{1} \times \cdot 001$ up to $S_{1} \times 1 \cdot 000$. $S_{1}=\sin 15^{\circ}=\cdot 25882$.

Table VIII.—Products of $S_{1} \times \cdot 001$ up to $S_{1} \times 1 \cdot 000$. $S_{i}=\sin 15^{\circ}=\cdot 25882$.

No.	- 000	-001	- 002	- 003	-004	-005	-006	-007	- 008	-009	No.
- 50	- 129410	- I 29669	- 129928	-130180	-130445	-130704	-130963	-131222	-13148I	131739	So
$\cdot 51$	-131998	-132257	-132516	-132775	- 133033	-133292	-13355	-133810	-134069	- 134328	-51
- 52	-134586	-134845	-135104	- 135363	-135622	-135881	-136139	-136398	-136657	-136916	-52
-53	-137175	- 137433	-137692	-137951	- 138210	- 138469	- 138728	- 138986	-139245	- 139504	- 53
-54	-139763	-140022	-140280	-140539	-140798	-141057	-141316	- 141575	-1418.33	- 142092	- 54
- 55	-142351	-142610	- 142869	-143127	$\cdot 143386$	- 143045	-143904	-144103	-144422	- I4468c	$\cdot 55$
- 56	$\cdot 144939$	- 145198	-145457	- 145716	- 145974	-146233	- 146492	-146751	-147010	- 147269	-56
$\cdot 57$	-147527	-147786	-148045	-148304	-148563	-148822	- 149080	- 149339	-149598	-149857	$\cdot 57$
- 58	-150116	-150374	$\cdot 150633$	- 150892	-151151	-151410	-151669	-151927	-152186	-152445	- 58
- 59	$\cdot 152704$	-152963	- 153221	- 153480	-153739	- 153998	-154257	- 154516	- 154774	- 155033	- 59
-60	$\cdot 155292$	-15555 ${ }^{\text {I }}$	-155810	-156068	-156327	- 150586	- 156845	-157104	-157363	-15762:	-60
.61	- 157880	- 158139	- 158398	- 158657	-158915	- 159174	-159433	- 159692	- 159951	-160210	-61
- 62	-160468	-160727	- 100986	-161245	-161504	-161763	-102021	-162280	-162539	-162798	-62
$\cdot 63$	-163057	-163315	- 163574	- 163833	-164092	-164351	-164610	- 164868	-165127	-165386	. 63
-64	-165645	- 165904	-166162	-160421	-166680	-160939	$\cdot 167198$	-167457	-167715	-167974	. 64
-65	-168233	- 168492	-168751	- 169009	- 169268	-169527	-169786	-170045	-170304	-170562	. 65
- 66	- 170821	-171080	-175339	-171598	-171856	-172115	-172374	- 172633	-172892	-173151	- 66
- 67	-173409	-173668	-173927	-174186	-174445	-174704	- 174962	-175221	-175480	- 175739	- 67
- 68	${ }^{1} 175998$	- 176256	-176515	-176774	-177033	-177292	-177551	- 177809	-178068	-178327	- 68
-69	-178586	- 178845	-179103	-179362	-179621	-179880	-180139	-180398	-180656	-180915	- 69
- 70	-181174	- 181433	- 181692	-181950	-182209	-182468	$\cdot 182727$	- 182986	- 183245	-183503	- 70
- 71	-183762	- 18402 x	- 184280	- 184539	-184797	-185056	-185315	-185574	- 185833	- 186092	71
${ }^{-72}$	-186350	- 186609	- I86868	-187127	-187386	-187645	-187903	-188102	- 188421	- 188680	-72
$\cdot 73$	-188939	-189197	- 189456	-189715	-189974	-190233	- 190492	-190750	-191009	- 191268	$\cdot 73$
\cdots	-191527	-191786	-192044	- 192303	-192562	-192821	- 193080	- 193339	- 103597	- 193856	- 74
'75	'194115	-194374	-194633	-194891	-195150	- 195409	- 195668	- 195927	- 196186	- 196444	-75
$\cdot 76$	-196703	-196962	-197221	-197480	- 197738	- 197997	- 198256	-198515	- 198774	- 199033	-76
-77	-199291	-199550	- 199809	- 200068	$\cdot 200327$	$\cdot 200586$	- 200844	- 201103	- 201362	- 201621	- 77
$\bullet 78$	- 201880	- 202138	- 202397	- 202656	- 202915	- 203174	- 203433	- 203691	- 203950	- 204209	-78
$\cdot 79$	- 204468	- 204727	- 204985	- 205244	- 205503	- 205762	- 206021	- 206280	- 206538	- 206797	- 79
-80	-207056	- 207315	- 207574	- 207832	- 208091	- 208350	- 208609	- 208868	-209127	- 209385	-80
${ }^{-81}$	- 209644	- 209903	- 210162	-210425	- 210679	- 210938	-211197	- 211456	-211715	-211974	-81
-82	- 212232	- 212491	- 212750	- 213009	- 213268	- 213527	- 213785	- 214044	$\cdot 214303$	$\cdot 214562$	-82
$\cdot 83$	$\cdot 214821$	- 215079	- 215338	- 215597	- 215856	-216115	- 216374	-216032	-216891	-217150	.83
-84	- 217409	- 217668	- 217926	-218185	- 218444	$\cdot 218703$	- 218962	- 219221	- 219479	$\cdot 219738$. 84
-85	- 319997	- 220256	- 220515	$\cdot 220773$	$\cdot 221032$	- 321291	-221550	-221809	- 222068	$\cdot 222826$	- 85
$\cdot 86$	- 222585	- 222844	-223103	- 223362	- 223620	-223879	. 224138	- 224397	- 224656	-224915	. 86
-87	-225173	- 225432	- 225691	- 225950	- 236209	- 226468	- 226726	-226985	- 227244	- 227503	-87
$\cdot 88$	- 227762	- 228020	- 228279	- 228538	-228797	- 229056	- 229315	- 229573	- 229832	-230091	-88
-89	- 230350	- 230609	- 230867	-23I126	-231385	-231644	- 231903	- 232162	- 232420	-232679	$\cdot 89$
-90	${ }^{2} 232938$	- 233197	$\cdot{ }^{2} 33456$	-233714	- 233973	-234232	- 234491	- 234750	$\cdot 235009$	- 235267	-90
$\cdot 91$	-235526	- 235785	- 236044	-236303	-236561	-236820	- 237079	- 237338	-237507	-237856	-91
-92	$\cdot \cdot 238114$	- 238373	- 238632	- 238891	. 239150	$\cdot 239409$	- 239667	-239926	-240189	- 240444	-92
-93	-240703	$\cdot 340961$	- 241210	$\cdot 241479$	- 241738	- 241997	- 242256	- 242514	${ }^{-242773}$	- 243032	-93
-94	$\cdot 243291$ $\cdot 245879$	- 243550	- 243808	$\cdot 244067$	- 244326	- 244585	- 244844	- 245103	- 245361	- 245620	- 94
'95	$\cdot 245879$	-246138	- 246397	$\cdot 246055$	- 246914	-247173	- 247432	- 247691	- 247950	- 248208	-95
-96	- 248467	- 248726	- $2488{ }^{885}$	- 249244	- 249502	- 249761	- 250020	- 250279	- 250538	- 250797	-96
$\cdot 97$ $\cdot 98$	$\cdot 251055$.253644	. 251314	$\cdot 251573$	- 251832	- 252091	- 2523 \%	- 252608	- 252867	- 253126	- 253385	-97
-98	${ }_{-} \cdot 35344$	- 253902	-254161	- 254420	- 254679	- 254938	- 255197	- 255455	- 255714	- 255973	- 98
$\cdot 99$ 1.00	$\cdot 256232$ $\cdot 158830$	- 256491	- 256749	- 257008	- 257267	- 257526	- 257785	-258044	-258302	-258561	$\begin{array}{r}\cdot 99 \\ \hline \cdot 00\end{array}$

Table IX.-Products of $\mathbf{S}_{3} \times \cdot 001$ up to $\mathbf{S}_{3} \times 1 \cdot 000$.
 $S_{3}=\sin 45^{\circ}=70711$.

No.	-000	- 001	'002	-003	- 0	-003	006	'007	-008	-009	No.
- 0	-000000	-000707	- 001414	-002121	- 002888	- 003536	-004243	-004950	-005657	-006364	-00
$\cdot 01$	-007071	-007778	-008485	-009193	-009900	-010607	-011314	-012021	-012728	-013435	-01
-02	-014142	-014 44	-015556	- or6a64	-016971	-017678	-018385	-019093	-019799	- 030506	-02
.03	$\cdot 021213$	-031920	-022628	-023335	-024042	-024749	-025456	-026163	-026870	- 027577	$\cdot 03$
-04	-028284	-028993	-029699	-030406	-031113	-031820	-032527	-033234	-033941	-034648	-04
. 05	-035356	-036063	-036770	-037477	-038184	-038891	- 039598	-040305	-041012	-041719	-05
-06	-042427	-043134	-04384I	-044548	-045255	-045962	-046669	-047376	-048083	-048791	-06
-07	-049498	- 050205	-050912	-051619	-052326	-053033	-053740	-054447	-055155	-055862	-07
-08	-056569	-057276	-057983	-058690	-059397	-060104	- 060811	-061519	- 062226	- 062933	-08
-09	-063640	-064347	-065054	-065761	-066468	-067175	-067883	-068500	-069297	-070004	$\cdot 09$
$\cdot 10$	-070711	-071418	. 072125	-072832	-073539	-074247	-074954	-075661	-076368	-077075	- 10
- II	-077782	. 078489	-079196	-079903	-0806II	-081318	-082025	-082732	-083439	-084146	-II
-12	-084 ${ }^{-0953}$	-085560	-086267	-086975	-087682	-088389	-089096	-089803	-090510	-091217	-12
$\cdot 13$	$\cdot 091924$	-093631	- 093339	-094046	-0947:3	-095460	-096167	-006874	-097581	-098288	-13
$\cdot 14$	-098995	-099703	- 100410	-101I7	- 101824	-102531	-103238	-103945	-1046s 2	- ros359	-14
-15	- 106067	- 106774	- 107481	-108188	- 108895	- 109602	$\cdot 110309$	-111016	-111723	- I12430	- 15
$\cdot 16$	-113138	- 113845	-114553	- 115259	- 115966	-116673	-117380	$\cdot 118087$	-118704	- 119502	116
$\cdot 17$	- 1230109	- 120916	- 111623	- 122330	- 123037	- 123744	-124451	-125158	- 125866	- 126573	$\cdot 17$
-18	-137280	$\cdot 127987$	- 128694	- 129401	- 130108	-130815	-131522	-132230	-132937	- 133644	${ }^{1} 18$
-19	-13435 1	-135058	-135765	-136472	-137179	- 137886	-138594	-139301	-140008	-140715	-19
- 20	-141423	-142129	-142836	-143543	-144250	-144958	-145665	-146372	-147079	-147786	$\cdot 30$
21	- 148493	$\cdot 149300$	-149907	-150614	-151322	-152029	$\cdot 152736$	-153443	-154150	- 154857	, 21
$\cdot 12$	-155564	-156271	- 156978	- 157686	- 158393	- 159100	- 159807	$\text { , } 160514$	-161221	-161928	$\cdot 22$
$\cdot 23$	-163635	- 163342	- 164050	-164757	-165464	-166171	-166878	- 167585	-168292	- 168999	- 23
- 24	-169706	-170414	-171121	-171828	- 172535	-173242	-173949	-174656	-175363	-176070	$\cdot 24$
- 25	-176778	-177485	-178192	-178899	-179606	-180313	-181020	- 181727	-182434	-183141	$\cdot 25$
$\cdot 26$	-183849	-184556	- 185263	-185970	-18667 7	-187384	- 1880g 1	- 188798	-189505	- 190213	- 26
$\cdot 27$	- 180030	-191637	- 192334	-193041	-103748	-194455	-195162	- 195869	- 196577	-197284	$\cdot{ }^{-27}$
$\stackrel{.28}{-29}$	$\text { - } 197991$	-198698	- 199405	- 200112	$\text { - } 3008 \mathrm{rg}$	- 201526	- 203233	$\text { - } 202941$	$\text { - } 303648$	- 204355	$\cdot 38$
$\cdot 29$	- 305068	$\text { - } 205769$	- 206476	- 207183	. 207890	- 208597	- 209305	$\text { . } 310012$	$\cdot 210719$	- 311426	$\cdot 39$
-30	- 212133	- 212840	$\cdot 213547$	$\cdot 214254$	- $21496 ;$	$\cdot 215669$	- 216376	-217083	- 217790	- 218497	- 30
$\cdot 31$	- 219204	- 119914	- 220618	$\cdot 221325$	-212033	- 232740	- 223447	- 324154	- 22486 t	- 225568	'31
$\cdot 32$ \cdot \cdot	$\text { - } 2266275$	$\cdot 226982$	$\cdot 227689$	$\cdot 228397$	$\cdot 329104$	- 229811	$\cdot 230518$	- 231225	. 231932	-232639	$\cdot 32$
$\cdot 33$	- 233346	$\cdot 234053$	$\cdot 23476 i$	- 335468	-236175	- 236882	$\cdot 237589$	- 238296	- 239003	-239710	'33
- 34	$\cdot 240417$	- 241125	$\cdot 241832$	-242539	- 243246	- 243953	- 244660	$\cdot 245367$	$\cdot 246074$	-246788	$\cdot 34$
- 35	- 247489	- 248106	- 248903	- 249610	-250317	-251024	- 251731	- 252438	- 253145	- 253852	-35
- 36	- 254560	- 255167	-355974	- 256681	- 257388	- 258095	- 298802	- 259509	- 260216	- af 0924	'36
$\cdot 37$	- 201631	- 263338	- 263045	- 263752	- 264459	$\cdot 265166$	$\cdot 265873$	$\text { - } 266580^{\circ}$	$\text { - } 267288$	$\text { - } 267995$	$\cdot 37$
. 38	-268702	- 269409	-270116	-270823	. 271530	-272137	-272944	- 27365	- 374359	- 275066	. 38
$\begin{array}{r}\cdot 39 \\ \cdot \\ \hline\end{array}$	- 275773	- 276480	$\cdot 277187$	- 277894	- 278601	- 279308	- 280016	- 280723	- 281430	- 382137	- 39
$\cdot 40$	- 283844	- 283551	-284255	$\cdot 284965$	- 285672	- 286380	- 287087	- 287794	- 388501	- 389208	- 40
-41	- 289915	- 290612	-291329	- 292036	- 292744	- 293451	- 294158	- 294865	- 295572	- 296279	41
4.43	- 296986	- 297693	- 398400	- 299108	- 299815	-300522	- 301229	- 301936	. 302643	- 303350	-42
-43	- 304057	- 304764	- 305472	-306179	- 306886	- 307593	- 308300	- 309007	-309714	- 310431	- 43
-44	-311128	$\cdot 311836$	- 312543	-313250	-313957	- 314664	- 315371	-316078	- 316785	- 317492	. 44
- 4	$\cdot 318200$	-318907	- 319614	-320321	- 321028	-321735	-321442	-323149	$\cdot 323856$	- 324563	. 45
$\cdot 46$	-335271	- 325978	- 336685	-327397	-328099	-328806	-329513	- 330120	-330927	- 331635	. 46
$\cdot 47$	-331342	-333049	- 3133756	- 334463	- 335170	- 335877	- 336584	-337291	-337999	-338706	. 47
. 48	$\cdot 339413$	$\cdot 340120$	$\cdot 340827$	- 341534	-342241	- $34294{ }^{4}$	- 343655	- 344363	-345070	- 345777	-48
.49 .50	$\cdot 346484$ $\cdot 353555$. 347191	-347898	- 348605	- 349312	-350019	$\cdot 350727$	$\cdot 351434$	- 352141	- 352848	.49 -80
$\cdot 50$	- 353555	- 354262	- 354969	- 355676	$\cdot 356383$	-357091	$\cdot 357798$	-358505	- 359212	-359919	- 80

Table IX.-Products of $\mathbf{S}_{3} \times \cdot 001$ up to $\mathbf{S}_{3} \times 1 \cdot 000$.

$$
S_{3}=\sin 45^{\circ}=\cdot 70711
$$

Chap. I.]
The Tides

Table X.-Products of $S_{4} \times \cdot 001$ up to $S_{4} \times 1.000$. $S_{4}=\sin 60^{\circ}=\cdot 86603$.

No.	-000	- 001	-002	-003	-004	-00	- 006	-007	-008	-009	No.
. 00	${ }^{4} 00000$	- 000866	-001732	-002598	-0034	-004330	-005196	-006062	-006928	-007794	-00
. 01	-008660	-009526	-010392	-011258	-012124	- 01290	- 013856	-014723	. 015589	-016455	-1
. 02	-017321	-018187	-01905	- 019919	-020785	-021651	-022517	-023383	- 024240	-025115	-02
. 03	-02598	-026847	-02;713	-028579	-029445	-030311	-031177	-032043	-032909	-033775	-03
. 04	- c34 $^{\text {c }}$ I	-035507	-036373	-03723	-038105	-038971	-039837	-040703	- 041569	-042435	-04
. 05	- 643303	-044168	- 045034	-045900	-040766	-047632	-048498	-049364	. 050230	-051096	. 05
. 06	-051962	-052828	-053694	-054560	-055426	-056292	-057158	-058024	- 0588go	-059756	-06
. 07	-060622	-061488	- 062354	- 063220	-064086	-064952	-065818	-066684	- 067550	-068416	-07
. 08	-069282	-07014 ${ }^{8}$	-071014	-071880	-072747	-073613	-074479	-075345	-076211	-077077	-08
.09	-077943	$\cdot 078809$. 079675	-080541	-081407	-082273	-083139	-084005	-084871	-085737	-09
. 10	-086603	-087469	. 088335	-089301	-090067	-090933	-091799	-092665	-093:31	-094397	10
. 11	-095263	-096139	-096	-097861	$\cdot{ }^{-098727}$	-099593	- 100459	-101326	- 102192	- 103058	111
.12	- 103924	-104790	- 105656	- 106522	-107388	- 108254	-109120	-109986	- 110852	-11718	12
.13	-112584	-113450	- 114316	-115182	-116048	-116914	-117780	- 118646	-119512	- 120378	$\cdot 13$
. 14	- 121244	${ }^{-12}$	- 122976	- $12384{ }^{2}$	- 124708	-125574	-126440	-127306	- 128172	- 129038	-14
.15	- 129905	-130771	$\cdot 131637$	-132503	$\cdot 133369$	-134235	-135101	-135967	- 136833	-137699	-15
16	-138565	- 13943 I	-140297	-141163	- 142029	-142895	-143761	- 144627	- 145493	- 146359	- 16
$\cdot 17$	-147225	-148091	-148957	- 149883	- 150689	-151555	-152421	- 153287	- 154153	- 155019	$\cdot 17$
$\cdot 18$	- 155885	-156751	-157617	$\cdot 158483$	- 159350	-160216	-161082	-161948	-162814	-163680	-18
- 19	- 164546	-165412	-166278	- 167144	-168010	-168876	-169742	-170608	-171474	- 172340	$\cdot 19$
$\cdot 20$	-173106	${ }^{-174072}$	-174938	-175804	-176670	-177536	- 178402	-179268	-180134	-181000	- 20
$\cdot 11$	$\cdot 18186$	-182	$\cdot 183598$	- 184464	- 185330	-186196	-187062	- 187929	-188795	- 18966I	- 21
- 22	-190527	-191393	- 192259	-193125	- 191991	- 194857	-195723	-196589	-197455	- 19832I	- 29
$\cdot 33$	- 199187	- 200053	- 100919	- 201785	- 202651	- 203517	- 204383	- 205249	- 206115	- 206981	$\cdot 23$
$\cdot 24$	$\cdot 207847$	$\cdot 208713$	$\cdot 209579$	$\cdot 210445$	-211311	$\cdot 212177$	$\cdot 213043$	$\cdot 213909$	$\cdot 214775$	$\cdot 215641$	- 24
$\cdot 25$	-216508	- 217374	- 218240	- 219106	-219972	- 220838	-221704	-222570	-223436	- 224302	- 25
$\cdot 36$	- 225168	- 226034	- 126900	- 227766	- 228632	- 229498	- 230364	-231230	- 232096	- 232962	$\cdot 26$
$\cdot \cdot 17$	$\cdot 233838$	$\cdot 234694$	-235560	$\cdot 23642$	-237292	$\cdot 238158$	$\cdot 239024$	- 239890	- 240756	$\stackrel{241622}{ }$	- 27
$\cdot 28$	- 242488	- 243354	- 344220	- 245086	$\cdot 245953$	- 246819	- 24 /685	- 248551	- 249417	$\cdot 250283$	- 28
- 39	- 251149	- 252015	-152881	$\cdot 253747$	- 254613	- 255479	-256345	$\cdot 257211$	- 2588077	- 258943	- 29
- 30	- 259809	- 260675	- 261541	-262407	- 263273	-264139	- 265005	-26587t	- 266737	- 267603	$\cdot 30$
$\cdot 31$	$\cdot{ }^{268469}$	- 269335	- 270201	-271067	-271933	- 272799	- 273665	-274532	- 275398	-276264	$\cdot 31$
$\cdot 33$	$\cdot{ }^{-377130}$	- 277996	$\cdot 378862$	-279728	- 280594	- 281460	- 282326	$\cdot 283192$	- 284058	$\cdot 284924$	- 32
$\cdot 33$	- 385790	- 286656	- 287512	- 288388	- 289254	- 290120	- 290986	-291852	- 292718	- 293584	$\cdot 33$
$\cdot 34$	- $39+450$	- 2953 [6	-296182	- 297048	- 297914	-298780	- 299646	-300512	$\cdot 301378$	$\cdot 303244$	- 34
- 35	-303111	- 303977	$\cdot 304843$	- 305709	- 306575	- 307441	- 308307	- 309173	$\cdot 310039$	$\cdot 310905$	-35
- 36	-311771	-312637	$\cdot 311503$	$\cdot 314369$	-315235	, 316101	-316967	-317833	-318699	-319565	$\cdot 36$
$\cdot 37$	- 310431	-311297	-322163	$\cdot 323029$	- 323895	-324761	-325627	-326493	-327359	- 328225	-37
- 38	$\cdot 329091$	-329957	- 330823	- 331689	-332556	$\cdot 333422$	- 334288	$\cdot 335154$	$\cdot 336020$	$\cdot 336886$	- 38
- 39	- 337752	$\cdot 338618$	$\cdot 339484$	- 340350	-341216	- 342082	- 342948	$\cdot 343814$	-34468o	- 345546	- 39
$\cdot 40$	-346413	- 347278	-348144	-349010	$\cdot 349876$	'350742	- 351608	-352474	$\cdot 353340$	-354206	'40
41	- 355072	- 355938	-356804	- 357670	$\cdot 358536$	-359402	-360268	- 61135	$\cdot 362001$	-362867	$\cdot 41$
$\cdot 42$	$\cdot 363733$	- 364599	- 365465	- 366331	$\cdot 367197$	-368063	- 31.8929	- 369795	- 370661	-371527	'42
. 43	- 372393	- 373259	$\cdot \cdot 374125$	- 374991	- 375857	-37-1723	- 377389	$\cdot 378455$	-37932 ${ }^{\text {r }}$	$\cdot 380187$. 43
.44	-381053	$\cdot 381919$.390580	$\cdot .382785$	$\cdot 383651$	$\cdot{ }^{384517}$	-385383	- 386249	$\cdot 387115$	$\cdot 387981$	$\cdot 3^{88847}$. 44
$\cdot 45$	- 389714	$\cdot 390580$	- 391446	-392312	-393178	- 394044	- 394910	- 395776	-396642	397508	-45
$\cdot 46$	-398374	- 399240	$\cdot 400106$	-400972	$\cdot 401838$	$\cdot 402704$	- 403570	- 404436	-405302	-406168	$\cdot 46$
$\cdot 47$	-407034	- 407900	- 408766	-409632	- 410498	-411364	-412230	413096	$\cdot 413962$	$\cdot 414828$	-47
- 48	-415694	.416560 .43521	.417426 .426087	-418293	$\cdot \mathrm{-} 419159$	- 420025	$\cdot 420891$	+421757	$\cdot 422623$	- 423489	.48 .49
. 44	-424355	$\begin{array}{r}+425211 \\ \hline 433881\end{array}$	$\cdot 436087$.4347	- 426953	-427819	- 428685	$\cdot 429551$	-430417	- 431283	- 433149	-49
- 50	-433015	-433881	- 434747	- 435613	- 436479	- 437345	-4382 II	-439077	-439943	-440809	- 50

Char. I.]
Theory and Computation

Table X.-Products of $S_{4} \times \cdot 001$ up to $S_{4} \times 1 \cdot 000$.

$$
S_{4}=\sin 60^{\circ}=\cdot 86603
$$

No.	-000	-001	02	-003	-004	-005	-006	-007	-008	. 009	No.
- 50	-433015	-433881	-434747	-435613	-436479	-437345	-438211	-439077	-430943	-440809	50
$\cdot 51$	-441675	-442541	-443407	-444273	-445139	- 446005	-446871	-447738	- 448604	-449470	51
$\cdot 52$	-450336	-451202	- 452068	-452934	-4.58800	- 354666	-45553 ${ }^{2}$	-456398	- 457264	-458130	52
$\cdot 53$	-458996	-459862	-460728	-461594	-462460	- 463326	-464192	-465058	-465924	-466790	53
- 54	- 407656	-468522	-469388	- 470254	-471120	-471986	-472852	-473718	- 474584	- 475450	54
$\cdot 55$	-476317	-477183	-478049	-478915	-479781	- 480647	\cdot^{481513}	-482379	-483245	-484111	55
- 56	-484977	-485843	-486709	-487575	- 48844 I	-489307	-490173*	-491039	-491905	-492771	56
$\cdot 57$	- 493637	-494503	- 495369	- 496235	-497101	- 497967	${ }_{-498833}$	- 499699	- 500565	- 501431	57
$\stackrel{58}{ }$	- 502297	-503163	-504029	-504895	-505762	- 506628	-507494	-508360	- 509226	- 510092	58
- 59	-51095 ${ }^{8}$	- 511824	-512690	- 513556	-514422	- 515288	-516154	-517020	${ }^{-517886}$	-518752	59
-60	-519618	-520484	-521350	- 522216	-523082	- 523948	-524814	-525680	-526546	-527412	60
${ }^{6} 61$	- 528278	-529144	-530010	- 530876	-531742	- 532608	- 533474	- 534341	- 535207	-536073	61
-62	- 536939	-537805	-538671	- 539537	-540403	- 541260	-542135	-543001	-543867	-544733	62
$\cdot 63$	- 545599	-546465	-547331	- 548197	-549063	- 549929	- 550795	-551661	-552527	-553393	63
$\cdot 64$	- 554259	- 555125	-555991	- 556857	-557723	- 558589	- 559455	-560321	- 561187	-562053	${ }^{6}$
. 65	- 562920	- 563786	-564652	- 565518	$\cdot 56638_{4}$	- 567250	-568116	-568982	-569848	-570714	65
-66	- 571580	- 572446	-573312	- 57417^{8}	-575044	- 575910	- 576776	-577642	-578508	-579374	. 66
-67	-580240	- 58 rio6	- 581972	-582838	-583704	- 584570	- 585436	- 586302	-587168	-588034	. 67
-68	- 588900	-589766	-590632	-591498	-592365	- 593231	- 594097	- 594963	- 595829	-596695	-68
$\cdot 69$	- 5979561	- 598427	- 599293	-600159	-601025	-601891	-602757	${ }_{-603623} \cdot 6$	-604489	-605355	$\cdot 69$
$\cdot 70$	-606221	-607087	-607953	-608819	-609685	-610551	-61147	-612283	-613149	-614015	70
$\cdot 71$	-614881	-615747	-616613	-617479	-618345	-619211	-620077	- 620944	-6218ro	-622676	$\cdot 71$
$\cdot 73$	-623542	- 624408	-625274	-626140	-627006	- 627872	-628738	-629604	-630470	-631336	72
$\cdot 73$	-632202	-633068	-633934	-634800	- 635666	- 636532	-637398	. 633264	-639130	- 630996	73
$\cdot 74$	-640862	- 641728	- 642594	-643460	-644326	-645192	-646058	-646924	-647790	- 648656	-74
$\cdot 75$	-649523	-650389	-651255	-652121	-652987	-653853	-654719	-655585	-656451	-657317	75
$\cdot 76$	-658183	- 659049	-6509r 5	-66ه8 ${ }^{\text {r }}$	-661647	-662513	- 663379	. 664245	-665ıII	-665977	76
$\cdot 77$	-6668 +3	-667709	- 688555	-669441	-670307	-671173	-672039	. 672905	-673771	- 674637	77
788	- 675503	-676369	-677235	-678101	- 678968	- 679834	-680700	. 681566	-682432	-683298	$\cdot 78$
$\cdot 79$ $\cdot 80$	-684164	-685030	- 685896	-686762	- 687328	-688494	-689360	-690226	-691092	-691958	79
-80	-692824	-693690	-694556	-695422	-696288	-697154	-698020	. 698886	-699752	- 700618	80
${ }^{-81}$	-701484	-702350	- 703216	- 704082	-704948	- 705814	- 706680	-707547	-708413	-709279	-81
.82 .88 .8 8	$\cdots 710145$	${ }^{7} 711011$	$\cdot 711877$	- 712743	- 713699	- 714475	$\cdots 15341$		${ }^{-717073}$.82
.83 .84 8	$\cdot 718805$	-719671	- 730537	-721403	- 722269	$\cdot 723135$	- 724001	- 724867	- 725733	-726599	.83
-84	$\bigcirc 727465$	-728331	-729197	$\cdot 730063$	-730929	$\cdot 731795$	-732661	$\cdot 733527$	$\cdot 734393$	-735259	${ }_{-84} \cdot 8$
-65	'736126	${ }^{7} 736992$	$\cdot 73785^{8}$	-739724	739590	-7404.56	-741322	-742188	$\cdot 743054$	- 743920	
$\stackrel{86}{.87}$	- 744786	${ }^{7} 755652$	-746518	-747384	$\cdot 748250$	- 749116	$\cdot 749982$	- 750848	$\cdot 751714$	${ }^{7} 752580$	$\cdot 86$
$\stackrel{89}{\cdot 88}$	- 753446	-754312	-755178	-756044	-756910	-757776	-758042	-759508	-760374	-761240	$\cdot 87$
$\stackrel{88}{\cdot 8}$	- 762106	-762972	${ }^{7} 763838$	- 764704	$\cdot 76557$	-760437	- 767303	- 768169	-769035	-769901	$\cdot 88$
$\stackrel{89}{-80}$	- 770767	$\cdot 771633$	-772499	-773365	-774231	-775097	$\cdot 775963$	-776829	-777695	$\cdot 77856$	-89
-90	- 779427	${ }^{7} 780293$	'781159	-782025	-782891	$\cdot 783757$	$\cdot 784623$	-795489	$\cdot 786355$	-787221	$\cdot 90$
-91	$\cdot 788087$	$\cdot 788953$	$\cdot 789810$	- 790685	- 701551	-792417	-793283	- 794150	- 79.5016	-705882	0 O
9.92	-796748	-797614	$\cdot 798{ }^{880}$	-799346	-800212	-801079	- \%o1944	-802810	-803676	. 854542	92
-93	-805408	-806274	-807140	-808006	-808872	- 800738		-811470	-812336	-813202	93
\bigcirc	-814068 .822710	-814934	- ${ }^{1} 158800$	- 816666	.817532 .82659	-818398 -827050	$\cdot 819264$.827925	-8201.30	-820996	.821862 .830523	94
-96		-823595		-825327	-826193	-827059	-827925		-82905	-830523	-95
'97	-840049	$\begin{aligned} & 832255 \\ & .840915 \end{aligned}$	$\begin{aligned} & -83312121 \\ & \cdot 841781 \end{aligned}$	$\begin{aligned} & \cdot 83,3987 \\ & \cdot 842647 \end{aligned}$.834853 .843513	$\begin{aligned} & \cdot 835719 \\ & -844379 \end{aligned}$.836585 .845245 8	-837451 .846111	- 838317 -84697 8	-839183 -847843	96
.98	- 448769	-849575	-850441	-851307	-852174	-853040	-853906	-854772	-8550,38	-856504	98
1.69	- 857370	-85823 6	-859102	-859968	-860834	-861700	-862566	-863432	-864298	-86514	\cdots

Ceap. I.]

The Tides

Table XI.—Products of $\mathbf{S}_{\mathbf{5}} \times \cdot 001$ up to $S_{5} \times 1 \cdot 000$.

$$
S_{5}=\sin 75^{\circ}=\cdot 96593
$$

No.	000	- 1	-002	-003	-004	-005	co6	-007	-008	-009	No.
$\cdot \infty$	-000500	-000066	-001933	-002898	-003864	-004830	-005796	-006762	-007727	-008639	$\cdot \infty$
$\cdot 01$	-009659	-010635	-011591	-013557	-013523	-014489	-015455	-016421	-017387	-018353	01
-02	-019319	-020185	-021250	-032216	-023182	-024148	-025114	-026080	-027046	-028012	-02
. 03	-024978	-029944	-030910	-031876	-032842	-033808	-034773	-035739	-036705	-037671	${ }^{3}$
-04	-038937	-03900	-0.40569	-041535	-042501	-0.3467	- 044433	- $0+5399$	-046365	-947331	04
-05	-049297	-049262	-050228	-051194	-052160	-053126	-054092	-055058	-056024	- ${ }^{565990}$	$\bigcirc 5$
-06	-0こち956	-058922	-059988	-06085 4	-061820	-062785	-063751	-064717	-065683	- 066649	$\stackrel{06}{ }$
-07	-067615	-038581	-069547	-0705 13	-071479	-072445	-073411	-074377	-075343	-076308	07
-08	-077274	-078240	-079206	-080172	-081138	-082104	-083070	-084036	-085002	-085968	-88
-09	-086934	.087900	-088866	-089831	-0;0797	-091763	-092729	-093695	-094661	-095627	-09
- 10	$\cdot{ }^{-096593}$	-097559	-098525	-09949	-100457	- 101423	-102389	- 103355	-104320	- 105286	-10
-11	-106252	-107218	- 10818.	- 109150	- 110116	- $11 \mathrm{trOS}_{2}$	- 112048	-113014	-113980	- 114946	11
$\cdot 13$	-115912	-116878	-117443	-118809	-119715	-120741	-121707	-122673	-123639	-124605	$\cdot 12$
$\cdot 13$	-13557	-126537	-127503	- ז29469	-129435	-130401	$\cdot 131366$	-132332	-133298	- 134264	$\cdot 13$
$\cdot 14$	-135230	-136196	-137162	-138128	-130094	-140060	-141026	$\cdot 141992$	-142958	- 14392	114
-15	-144890	-145855	${ }^{1} 146821$	-147887	-148753	- 149719	- 150685	-151651	-152617	- 153583	$\cdot 15$
$\cdot 16$	-154547	-155515	-156481	-157447	- 158413	-159378	- 160344	-161310	-162276	- 163242	-16
$\cdot 17$	-164208	-165174	- 166140	-16710	-168072	-169038	-170004	- 170970	- 171936	-172901	$\cdot 17$
-18	-173867	-174833	-175790	-176765	- 177731	- 178697	- 179663	- 180629	-181595	-182561	18
$\cdot 19$	- 183527	-184403	- 185459	-186424	-187390	-188356	-189322	-190288	-191254	-192220	- 19
-20	-193186	-194152	-195148	$\cdot^{19608_{4}}$	-197050	-198016	-198982	-1999.48	-200913	- 201879	- 20
$\cdot 31$	- 202845	-203811	- 204777	- 205743	- 206709	-207675	-20864t	-209607	-210573	- 211539	- 21
-12	- 212505	-213471	- 214436	- $31 \leqslant 402$	-216368	-217334	$\cdot 218300$	- 219266	-220233	-221198	
$\cdot 31$	- 222164	- 2313130	- 22 2096	- 225062	- 226028	-226994	- 227959	- 228925	$\cdot 229891$	- 230857	$\begin{array}{r}23 \\ \cdot 24 \\ \hline 2\end{array}$
$\cdot 24$	- 231813	-232789	- 23375	- 234721	- 235687	- 236653	- 237619	-238585	$\cdot 239551$	- 240517	- 24
. 35	- 241483	- 24244^{8}	- 243414	- 244380	- 245346	- 246312	- 247278	-248244	- 249210	-250176	. 25
- 26	- 25	-25210	- 253074	- 2540	-255006	-235971	-25693	-257903	-258869	- 259835	16
- 27	- 26080	- 261767	- 262733	-263699	- 264665	- 265631	- 266597	- 267563	- 368529	-269494	$\cdot 27$
- 28	- 270460	- 271426	- 372392	-273358	- 274324	-275290	-276256	-277222	$\cdot 278188$	-279154	$\cdot 28$
- 29	- 380120	- 281086	- 282052	- 283017	- 283983	- 284949	-285915	-28688I	- 287847	- 288813	29
$\cdot 30$	- 289779	- 290745	-291711	- 292677	- 393643	- 294609	- 295575	- 296541	- 297506	- 298472	330
$\cdot 31$	- 299438	- 3004	- 301370	- 302336	- 303302	- 304268	- 305234	- 306200	- 307166	- 308132	-31
$\cdot 32$	- 300098	-310064	-311029	-311995	-312961	-313937	- 314893	- 315859	- 316825	-317791	${ }^{32}$
33	-318757	-319733	- 310680	- 321655	-323621	-323587	- 324552	- 325518	- 326484	- 317450	${ }_{-31}$
$\cdot 34$	-328416	-319383	- 330348	-331314	-332280	- 333346	- 334112	$\cdot 335178$	- 336144	- 337110	\bigcirc
$\cdot 35$	-338076	-33904 1	$\cdot 340007$	-340973	-341939	- 342905	$\cdot 343871$	- 344837	-345803	-346769	. 35
$\cdot 36$	-347335	$\cdot 34^{8701}$	-349667	-350633	- 351599	-352564	-353530	$\cdot 354496$	- 355462	-356428	${ }^{36}$
- 37	- 3173734	- 388380	$\cdot 359326$	-360292	- 361258	$\cdot 362234$	$\cdot 363190$	$\cdot 364156$	- 365122	- 366087	37
- 38	- 367053	- 368019	$\cdot 368985$	-369051	-370917	$\cdot 371883$	- 373849	-373815	${ }^{-374781}$	- 375747	- ${ }^{-38}$
$\cdot 30$	-376713	- 377679	${ }^{-378645}$	-379610	.380576	$\cdot 381542$	$\cdot 382508$.383474	$\cdot{ }^{-384447}$	- 385406	- 30
$\cdot 40$	-386372	$\cdot 38733^{4}$	$\cdot 348304$	$\cdot 380270$	- 390236	-391202	-393168	-393134	- 394099	- 395065	. 40
-41	-396031	- 396197	- 307963	- 398929	- 399895	-400861	-401827	-402793	-403759	-404725	-41
4.4	-405691	-40665	- 407622	- +08589	- 409554	$\cdot 410510$	$\cdot 411486$	-412452	-413418	-414384	42
$\cdot 43$	-415350	-416316	-417282	-418148	-419214	-420180	-421145	-423171	-423077	-424043	43
$\cdot 4$	-425009	-415975	-426941	-427907	-428873	-429839	- 430805	-431771	-432737	-433703	. 44
$\cdot 45$	-434669	-435634	-436600	-437566	-43 ${ }^{8532}$	-439498	- 440464	-441430	-442396	-443362	43
-46	-444328	-445294	- 446260	- 447226	-448192		-450123	-451089	-452055	-453021	46
-47	-45396	-454953	-455919	-456885	-459851	-458817	- 459783	-460749	-46r715	-462680	-47
	- 463646	-464612	-465378	-466544	-467510	-468476	-469442	- 470408	-471374	-472340	-48
$\stackrel{49}{-40}$	-773306	-474272	-475238	-476203	-477169	-478135	-479101	-480067	-48103.3	${ }^{4} 4819$. 49
- 90	-482965	- 483931	$\cdot_{4} 4_{4} 897$	- + $_{5} 5863$	-486829	- 487795	-488761	-489727	-490692	-4916	- 50

Chap. I.]

Theory and Computation

Table XI.-Products of $\mathbf{S}_{5} \times \cdot 001$ up to $S_{5} \times 1 \cdot 000$.

$$
S_{5}=\sin 75^{\circ}=\cdot 96593
$$

No.	-000	'001	-002	'003	- 004	-005	-006	-c07	-008	-009	No.
- 50	-482965	-483931	- $4^{88} 4897$	- 485863	- 486829	-487795	- 488761	-489727	- 490692	-491658	50
$\cdot 51$	- 492624	- 493590	-494556	- 495522	- 496488	- 497454	- 498420	- 499386	- 500352	-501318	51
$\cdot 52$	- 502284	- 503250	-504215	- 505181	- 506147	-507113	-508079	- 509045	- 510011	-510977	. 52
$\cdot 53$	-511943	$\cdot 512909$	- 513875	- 514841	- 515807	${ }_{-} 516773$	-517738	-518704	- 519670	- 520636	- 53
- 54	-511602	- 522568	- 523534	$\cdot 524500$	- 525466	- 526432	- 527398	- 528364	- 529330	- 530296	54
- 55	- 531262	-532227	- 533193	- 534159	- 535125	$\cdot 536091$	- 537057	- 538802	$\cdot \leq 38989$	- 539955	55
- 56	- 540921	-541887	- 542853	- 543819	- 544785	- 545750	- 546716	-547682	- 548648	- 549614	- 56
- 57	-550580	- 551546	- 552512	- 553478	- 554444	- 555410	- 556376	- 557342	-558;08	- 559273	57
- 58	- 560239	-561205	-562171	-563137	- 564103	-565069	- 566035	- 567001	-567967	- 568933	58
$\cdot 59$	-569899	- 570865	-571831	- 572796	- 573762	- 574728	- 575694	- 570660	- 577626	- 578592	- 59
-60	- 579558	- 580524	-581490	- 582456	- 583422	-584388	-585354	- 586320	-587285	- 588251	- 60
-61	-589217	- 590183	- 591149	- 592115	- 593081	- 594047	- 595013	- 595979	- 596945	- 597911	-61
$\cdot 62$	-598877	- 599843	-600808	-601774	-602740	- 603706	-604672	-605638	- 606604	-607570	-62
. 63	-608536	-609502	. 610463	-611434	-612400	. 613366	-614331	-615297	- 616263	-617229	-63
-64	-618195	-619161	-620127	-621093	-622059	. 623025	-623991	-624957	- 625923	-626889	. 64
-65	.627855	-628820	. 629786	-630752	. 631718	. 632684	. 633650	-634616	-635582	-636548	-65
- 66	-637514	. 638880	. 699446	-640412	. 641378	-642343	-643309	-644275	- 045241	-646207	. 66
-67	. 647173	-648139	. 649105	-650071	-651037	- 652003	-652969	-653935	-654901	-655866	. 67
. 68	. 656832	-657798	. 658764	-639730	-660696	-661662	. 662628	. 663594	-664560	- 665526	- 68
-69	. 666492	- 667458	- 668424	. 669389	. 670355	-671321	-672287	-673253	-674219	-675185	-69
$\cdot 70$.676151	.677117	. 678083	-679049	-680015	-68098ı	-681947	-682913	-683878	-684844	70
-71	-685810	. 686776	. 637742	-688708	-689674	-693640	-6916.6	-692572	- 693538	- 694504	$\cdot 71$
- 72	-695470	-696436	- 697401	-698367	-699333	- 700299	- 701265	$\cdot 702231$	- 703197	- 704163	-72
$\cdot 73$	- 705129	- 706095	-707061	- 708027	-708993	-709959	-710924	-711890	$\cdot 712856$	- 713822	$\cdot 7.3$
-74	-714788	- 715754	$\cdot 716720$	- 717686	$\cdot 718652$	- 719618	-720584	$\cdot 721550$	-722516	- 723482	- 74
$\cdot 75$	$\cdot 724448$	-725413	-726379	- 727345	- 728311	-729277	$\cdot 730243$	-731209	-732175	- 733141	-75
$\cdot 76$	$\cdot 734107$	-735073	$\cdot 736039$	-737005	-737971	-738936	-739902	- 740868	-741834	-742800	- 76
-77	- 743766	- 744732	-745693	$\cdot 746664$	-747630	-748596	- 749562	-750:28	-751494	- 752459	-77
$\cdot 78$	-753425	- 754391	-755357	- 756323	- 757289	-758255	- 759221	- 760187	-761153	-762119	- 78
-79	$\cdot 763085$	$\cdot 764051$	-765017	- 765982	-766948	$\cdot 767914$	-768880	- 769346	-770812	$\cdot 771778$	-79
-80	- 772744	- 773710	$\cdot 774676$	-775642	$\cdot 776608$	-777574	- 778540	$\cdot 779506$	$\cdot 780471$	$\cdot 781437$	-80
${ }^{-81}$	$\cdot 782403$	$\cdot 783369$	$\cdot 784335$	$\cdot 785301$	$\cdot 786267$	$\cdot 787233$	- 788199	- 789165	- 790131	-791097	. 81
-82	- 792063	-793029	-793994	- 794960	- 795926	-796892	- 797858	- 799824	-799790	- 8oon56	-82
-83	- 801722	-802688	- 803654	-804620	-805586	-806552	.807517	- $808_{4} 83$. 809449	-810415	-83
$\cdot{ }^{-84}$	-811381	-812347	-813313	- 814279	.815245	-816211	-817177	-818143	-819109	-820075	. 84
-85	-82104t	-822006	-822972	. 823938	-824904	. 825670	- 826836	. 827802	- 828768	- 829734	-85
-86	. 830700	. 831666	.832632	-833598	. 834564	-835529	. 836495	-837461	-838427	-839393	- 86
-87	-840359	-841325	-842291	-843257	-844223	-845189	-846155	-847121	-849087	-849052	-87
-88	- 850018	- 850984	-851950	-852916	-853 ${ }^{813}$	-854848	-855814	.856780	-857746	-858712	-88
$\cdot 89$. 8596978	. 860644	-861610	-862575	-863.341	. 864507	. 865473	. 866439	-867405	- 868371	-89
'90	-869337	. 870303	-871269	-872235	-873201	-874167	-875133	-876099	-877064	. 878030	-90
-91	.878996	-879962	-880928	-881894	-882860	-883826	- 884792	. 885758	. 886734	-887090	-91
-92	. 888656	-889622	-890587	-891553	-892519	-893485	-894451	-895417	. 896383	-897349	-92
.93 .94	-898315	-899a8I	- 900247	- 901213	-903179	-903145	-904110	-905076	- 906042	- 907008	-93
'94 95	$\cdot 907974$	-908940	-909906	'910872	-911838	-912804	-913770	-914736	-915702	-916668	- 94
'95	-917634	-918599	$\cdot 919565$	-92053 ${ }^{\text {1 }}$	-921497	-922463	-923429	. 934395	-925361	-926327	- 9 ?
$\cdot 96$	-937293	-928259	-929225	-930191	-931157	-932122	-9.13098	-934054	-935020	-935986	-9.
.97 .98	-936952	-937918	-938884	-939850	- $9+0816$	-941782	- 942748	- 943714	-944680	- 945645	-97
$\cdot 98$ $\cdot 99$	-946611	-947577	-948543	- 949509	- 950475	-951441	- 952407	- 953373	- 954339	- 955305	- 98
.99 $\cdot 900$	-956271 969930	-957237	$\cdot 958203$	-959168	-960134	'961100	-962066	-963032	- 963978	-964964	-99

124

Chap. I.]

The Tides

Table XII.-Natural Numbers to three plaees of Decimals corresponding to Logarithms with Indices 6, 7 and 8.

Logarithms with Index 6 or 4

Natural No.	Natural No. to 3 places of Decimals	Logarithms
-00000		.000
.00050	.001	.0000000 .00099

Logarithms with Index 7 or 3

Nat. No.	Nat. No. to 3 places of Decimals	Logarithms	Nat. No.	Nat. No. to 3 places of Decimals	Locarithms	Nat. No.	Nat. No. to 3 places of Decimals	Logarithms
-0010		-000000	-0045		. 6532125	-0085	-009	-. 2294189
-0015	-002	- 1760913	-0055	. 0005	.7403627	-0095	-010	-9777236
-0025	-003	-3979400	-0065	-007	-8129134	-0099		-9999999
-0035	-004	.5440680 .6532125	$\cdot 0075$ $\cdot 0085$	-008	-8750613			

Logarithms with Index 8 or $\overline{2}$.

Nat. No.		Logarithme.	Nnt. No.		Logarithme.	$\underset{\mathbf{N a t}}{\mathrm{Na}}$		Logarithme.	Nat. No.		Logarithms.
-0100		-0000000	-0325		-5118834	-0555		-7442930	$\cdot 0785$		-894869
-3105	.010	-0211893	-0335	$\cdot .033$	- 5250448	-0565	.056	-7520484	-0795	.079	-9003671
-01	-12	-0606978	-0345	-034	- 5378191	-0575	.057 .058	-7596678	-0805	-081	-9037999
-0125	-013	-0969100	$\stackrel{-0355}{-0365}$	-035	$\stackrel{-5502284}{ }$	-0585	-059	$\cdot 7671559$	-0815	-082	-9111576
-0135	-014	-130338 -1613680 -1	$\cdot 0365$ $\cdot 0375$	-037	$\cdot 5622939$ $\cdot 5740313$	$\begin{array}{r}.0595 \\ .0605 \\ \hline\end{array}$	-660	-7745170	-. 0825	-083	-9164539
-0145	-015	-1613680	$\cdot 0375$ $\cdot 0385$	-038	- 57840313	-0605	-061	$\cdot{ }^{7817554}$	-0835	-084	-9216865
-0155	-016	$\cdot 1903317$ $\cdot 217439$ 243	$\cdot 0385$ $\cdot 0395$	-039	$\stackrel{.}{.5854607}$. 06615	-062	- 78888551	-0845	-085	-9268567
-0175	-017	$\cdot 2174039$ $\cdot 243038$	-0395	'040	- 596059751	. 06025	-063	-7958800	-0855	-086	-93190161
-0185	-18	-2671717	$\cdot 0415$	$\cdot 041$	-618048!	-0645	-064	-8095597	-0875	7	-9420081
-0195	-020	- 2900346	-0425	22	-6283889	- 0655	. 065	-8162413	-0885	-080	-9469433
$\cdot 02$	-031	-3117539	-0435	-043	-6384893	-0665		-8228216	-0895	. 089	-9518330
-0215	-022	- 3324385	-0445	-044	-6483600	-0675	. 068	-8293038	-0905	.090	-9566486
-0225	-021	-3521825	-0455	. 045	-6580114	-0685	. 068	-8356906	-0915	.091	
-0235	-024		- 0465	-046		-0695	-069		- 0915	-092	-9661417
$\cdot 0145$ -0255	-024	$\stackrel{.3891661}{\cdot 4065402}$.0475 .0485	-048	.6766936 .6857417	.0705 .075	-070	-8481891	-0035	-094	-9708116
-0265	-	-4234459	- 0495	49	-6857427	-0715	-072	-8543033		-095	${ }_{9} 9800034$
-0275	$\begin{array}{r}-017 \\ -018 \\ \hline 0\end{array}$	-4393327	-0505	5	- 7032914	-0735	073	-8662873	-0965	-096	-9845273
-0285	-019	-4548449	-0515	-051	-7118072	-0745	.074	-8721563			-9890046
-0195	-019	-4698220	-0525	.052	-7201593	-0755	$\begin{array}{r}\cdot 075 \\ -076 \\ \hline\end{array}$	-8779470	-0985	.098	- 9934362
$\cdot 0305$ $\cdot 0315$	-031	-4842998	. 0535	-053	-7283538	-0765	-076	-8836614	-0995	-100	${ }^{-99798131}$
$\cdot 0315$ $\cdot 0325$	-032	- $\begin{array}{r}4983106 \\ -5118834\end{array}$. 0545	-054	- 7363965 $\cdot 7442930$	-0775	-078	-8893017	-0999		-9999999
			- 635		- 7442930	. 0785		- 8948697			

Centr. L.]
Theory and Computation

Table XIII.—Values of N (Longitude of Moon's Ascending Node)

 for 0 hour Greenwich Mean time, January 1.Value on 0 hour G. M. T., January $18 \mathrm{st}, 1880=285^{\circ} \cdot 056863$.
Motion per Julian year in $1880=19^{\circ} \cdot 34146248$.
Motion for 36 days $=19^{\circ} \cdot 32822387$ and for one day $=0^{\circ} \cdot 052954$.

Year	N	Year	N	Year	N	Year	\boldsymbol{N}
	\bigcirc		0		-		0
1850	$146 \cdot 1745$	1875	22.6509	1900	259-1277	1925	195.6082
51	$126 \cdot 8462$	76	3.3227	01	$239 \cdot 7995$	26	116.2801
52	107.5180	77	$343 \cdot 9415$	02	220.4713	27	96.9519
53	88-1368	78	324.6133	03	201.1431	28	$77 \cdot 6237$
54	$68 \cdot 8086$	79	305.285I	04	$18 \mathrm{I} \cdot 8148$	29	68.2426
1855	49.4803	1880	285.9569	1905	162.4337	1930	38.9144
56	$30 \cdot 1521$	81	$266 \cdot 5757$	06	143.1055	31	19.5853
57	10.7709	82	247.2475	07	123.7773	32	0.2581i
58	351.4427	83	227.9192	08	104.4490	33	340.8770
59	332.1144	84	205.5910	c9	85.0679	34	321.6488
1860	312.7862	1885	189.2098	1910	65.7397	1935	$302 \cdot 2806$
61	293.4050	80	$169 \cdot 8816$	11	$46 \cdot 4115$	36	$282.892{ }^{-}$
62	274 -0768	87	$150 \cdot 5534$	12	27.0833	37	263.5113
63	254.7486	88	131.2252	13	7.7021	3^{8}	244.1832
64	$235 \cdot 4203$	89	111.844°	14	348-3739	39	$224 \cdot 8500$
1865	$216 \cdot 0391$	1890	92.5158	1915	329.0457	1940	$205 \cdot 6268$
66	196.7109	91.	73-1876	16	309.7175	41	$186 \cdot 1457$
67	177.3827	92	53.8593	17	$290 \cdot 3363$	42	166.8175
68	158.0544	93	34.4782	18	27100081	43	147.4894
69	138.6733	94	151500	19	251-6799	44	128-1612
1870	119.3450	1895	355.8217	1920	$232 \cdot 3517$	1945	108.7801
71	100.0168	96	$336 \cdot 4935$	21	212.9705	46	$89 \cdot 4519$
72	$80 \cdot 6886$	97	317-1124	22	$193 \cdot 6423$		70.1238
73	61-3074	98	297.7841	23	174.3141	4^{8}	60.7956
74	41'9792	99	278.4559	24	$164 \cdot 9894$	49	31.4145

The values from 1924 onwards depend on the new formula in para 93. They are shown in italics in Table XIII.

The values for January 1 computed by the new formula were in excess of those published in the old edition of the table by 0.0034 in 1023 and 0.0042 in 1040.

The tabular values were accordingly corrected by interpolntion from the above to the new values,
The values may be also obtained from the N. Almanac which will usually be available in time for any particular year's computations.

Table XIV.-Showing the Decrement of N (Longitude of Moon's Ascending Node) since 0 hour January 1 up to Midnight of each Day throughout the Year.
 and the day following.

Date	Decre.	Date	Decre.	Date	Decre.	Date	Decre.	Date	Decre.	Date	Decre.
Jan.		Jan.		Jan.		Jan.		Fed.	-	Fef.	-
1-2	0.0265	11-12	0.5560	21-22	1.0856	$31 \cdot 32$	1.6151	9-10	2.0917	19.20	2.6212
$2-3$ $3-4$	$0 \cdot 0794$	12-13	0.6090	22-23	1-1385	Feb.		10.11	2.1446	20.21	$2 \cdot 6742$
3-4	0.1324	13.14	0.6619	23-24	$1 \cdot 1915$	1-2	1.6680	1112	2.1976	21.22	2.7271
4-5	0.1853 0.238	14.15 15	0.7149 0.769	2.2 .25 2.26	1.2444 1.2954	2-3	$1 \cdot 7210$	12.13 123	2.2505 2.305	22-23	2.7801
5-6	0.2383 0.2912	15.16 16.17	0.7678 0.8209	$25-16$ 26.27	1.2974 1.3503	3-4	1.7740 1.8269	13-14	$2 \cdot 3035$	23-24	2.833°
-7	0.2912 0.3442	16.17	0.8209	26.27	$1 \cdot 3503$	4-5	1.8269	14.15	$2 \cdot 3565$	24.25	2.8860
7-9	0.3442 0.3972	17.18 18.19	0.8737 0.926 0.	27.28 28.29	1.4033 1.4562	5	1.8799 1.9328	$15 \cdot 16$ $16-17$	2.4094 2.4624	25.26 26.27	2.9389
9-10	0.3972 0.4501	18.19 19.20	0.878 0.9267 0.9797		1.4502 1.5092	7-7		$16-17$ 17.18	2.4624 2.5153	26.27 27.28	2.9919 3.0449
10-11	$0 \cdot 5031$	20-21	1.0326	30.31	1.5621	8-9	$2 \cdot 03{ }^{2} 7$	18-19	2.5683	28-29	$\begin{array}{r}3.0449 \\ 3.0978 \\ \hline\end{array}$

[^13]Table XIV.-Showing the Decrement of N (Longitude of Moon's Ascending Node) since 0 hour January 1 up to Midnight of each Day throughout the year-(continued).

Daily Motion $=0^{\circ} .05295392220$ (new value).
In Leap Years for all dates after February 29-March 1, use a mean value between the particular day nad the day following.

Date	Decre.	Date	Decre.	Date	Decre.	Date	Decre.	Date	Decre.	Date	Decre.
Mar.	-	Apr.	-	June.	-	Aug	\bigcirc	SE	0	Nov	\bigcirc
I-2	$3 \cdot 1508$	22-23	5.9044	12-13	$8 \cdot 6050$	2-3	$11 \cdot 3057$	23-24	14'0593	13.14	16.7699
2. 3	3.2037	23-24	$5 \cdot 9573$	13-14	8.6580	3. 4	11.3586	24.25	14.1122	14-15	16.8129
3. 4	3.2567	$2+25$	6.0103	14-15	$8 \cdot 7109$	4. 5	11.4116	25-26	$14 \cdot 1652$	15-16	16.8658
4-5	$3 \cdot 3096$	25-26	$6 \cdot 0632$	15.16	$8 \cdot 7639$	5-6	11.4645	26-27	14.2181	16-17	16.9188
5. 6	3. 3626	26-27	$6 \cdot 1162$	16.17	$8 \cdot 8168$	6. 7	11.5175	27-28	14.2711	17-18	$16 \cdot 9717$
6. 7	3.4155	27-28	6.1691	17-18	8.8698	7-8	11.5704	28.29	14.3240	18-19	17.0247
7-8	$3 \cdot+685$	28-29	$6 \cdot 2221$	$18-19$	$8 \cdot 9227$	8-9	11.6234	29-30	14.3770	19-20	17.0776
8. 9	3.5214	29-30	$6 \cdot 2750$	19-20	$8 \cdot 9757$	9-10	$11 \cdot 6763$	30-31	14.4299	20-21	17.1306
9-10	3.5744	30-31	$6 \cdot 3280$	20-21	9.0386	10-11	11.7293	vet.		21.	17-1835
10-11	3.6273	May.		11-22	$9 \cdot 0316$	11-12	$11 \cdot 7822$	$1 \cdot$	14.4829	22-23	17.2365
11.12	$3 \cdot 6803$	1.	$6 \cdot 3809$	22-23	9.1346	12.13	11.8352	2. 3	14.5359	23-24	17-2895
12.13	3.7333	2. 3	$6 \cdot 4339$	23-24	9.1875	13 -14	11.8882	3-4	14.5888	24-25	$17 \cdot 3424$
13-14	3.7862	3-4	6.4869	$2+25$	$9 \cdot 2403$	14.15	11.9411	4-5	14.6418	25-26	17.3954
1415	$3 \cdot 8392$	4-5	$6 \cdot 5298$	25-26	$9 \cdot 2934$	15-16	11.9941	5. 6	14.6947	26.27	17.4483
15.16	3.8921	5-6	$6 \cdot 5928$	26-27	$9 \cdot 3464$	16-17	12.0470	6-7	14.7477	27-28	17-5013
16-17	3.9451	6. 7	$6 \cdot 6457$	27-28	9.3993	17-18	12.1000	7-8	14.8006	28-29	17.5542
17.18	3.9980	7. 8	$6 \cdot 6987$	28-29	9.4523	18-19	$12 \cdot 1529$	8. 9	14.8536	2930	17.6072
18-19	4.0510	8. 9	$6 \cdot 7516$	29-30	9.5052	19-20	12.2059	9-10	$1+.9065$	30-31	$17 \cdot 0601$
19-20	4.1039	9-10	$6 \cdot 8046$	30-31	9.5582	20-2I	12.2588	10-11	14.9595	Dec.	
2021	$4 \cdot 1569$	10-11	$6 \cdot 8575$	JULP.		21-22	12.3118	11	15.0124	1.	17.7131
21-22	$4 \cdot 2098$	1 I	6.9105	1-2	9.6111	22-23	12.3647	$12 \cdot 13$	15.0654	2. 3	17.7660
22.23	4.2628	12-13	$6 \cdot 9634$	2-3	9.6641	23-24	12.4177	13.14	15.1183	3-4	17.8190
23-24	$4 \cdot 3157$	13-14	$7 \cdot 0164$	3- +	9.7170	24.25	12.4706	14.15	15.1713	4-5	17.8719
24-25	$4 \cdot 3687$	14-15	$7 \cdot 0593$	4-5	9.7700	25-26	$12 \cdot 5236$	15-16	15.2213	5-6	17.9249
25-26	$4 \cdot 4217$	15.16	7.1223	5.6	9.8230	26-27	$12 \cdot 5766$	16.17	15.2772	6. 7	17.9779
26.27	4.4746	16.17	7.1753	6. 7	9.8759	27.28	12.6295	17-18	15.3302	7. 8	18.0308
27-28	4, ${ }^{27} 6$	1718	$7 \cdot 2282$	7.8	9.9289	28.29	12.6825	18.19	15.3831	8-9	18.0838
28.99	4.5805	18.19	$7 \cdot 2812$	8. 9	$9 \cdot 9818$	29-30	12.7354	19-20	15.4301	9-10	18.1367
29.30	4.6335	19-20	$7 \cdot 3341$	9-10	$10 \cdot 0348$	30.31	12.7884	20-21	15.4890	10.11	18.1897
30-31	$4 \cdot 6864$	20.21	$7 \cdot 3871$	10.11	$10 \cdot 0877$	31-32	12.8413	21-22	15. 5420	11-12	$18 \cdot 2426$
31.32	$4 \cdot 7394$	21-22	7.4400	11-12	$10 \cdot 1407$	SEPT.		22-23	15•5949	12-13	$18 \cdot 2956$
APR,		22-23	7.4930	12-13	10.1936	1-2	$12 \cdot 8943$	23.24	15.6479	13-14	18.3485
1-2	4.7923	23-24	$7 \cdot 5459$	13-14	$10 \cdot 2466$	2. 3	12.9472	$2{ }^{2}-25$	15.7008	14.15	18.4015
2-3	$4 \cdot 8453$	24.25	7.5949	14.15	10.2995	3-4	13.0002	25.26	$15 \cdot 7538$	$15-16$	18.4544
3. 4	4.8982	25-26	7.6518	15.16	10.3525	4-5	13.0531	26.27	15.8067	16-17	18.5074
4. 5	4.9512	26-27	7-7048	16.17	$10 \cdot 4054$	5.6	13.1061	27-28	$15 \cdot 8597$	17.18	18.5603
5. 6	$5 \cdot 0041$	27-28	7.7577	17-18	10.4584	6.7	13.1590	28-29	15.9127	18.19	18.6133 18.6663
6-7	$5 \cdot 0571$	28-29	7.8107	18-19	10.5114	7-8	13.2120	29-30	15.9656	19.20	18.666.3
7.8	5.1101 5.1630	29-30	7.8637	19.20	$10 \cdot 5643$	8. 9	13.2650	30-3t	16.0186	20.21	$18 \cdot 719^{2}$
8.9 9.10	$5 \cdot 1630$ 5.2160	$30-31$ $31-32$	7.9166 7.9696	20-21	10.6173 10.6702	9-10	13.3179	$3 \mathrm{l}-32$	$16 \cdot 0715$	21.22	18.7721 18.8251
9-10	5.2160	31-32	$7 \cdot 9696$	21.22	10.6702	$10-11$	13.3709	Nov.		22.23	18.8251 18.8981
10.11	$5 \cdot 3689$	JUNE		22.23	10.7232	11-12	13.4238	1-2	16.12+5	23-24	$18 \cdot 8781$
11.12	$5 \cdot 3219$	1. 2	8.0325	23.24	10.7761	12.13	13.4768	2. 3	16.1774	24.25	18.9310
12-13	$5 \cdot 3748$	2. 3	$8 \cdot 0755$	24.25	$10 \cdot 8291$	13-14	13.5297	3. 4	$16 \cdot 2304$	25.26	$18 \cdot 9840$
1314 14.15	5.4278 5.4807	3. 4	$8 \cdot 1284$	15-26	$10 \cdot 8820$	14.15	13.5827	4-5	$16 \cdot 2833$	26-27	19.0369 19.0890
14.15	$5 \cdot 4807$	4-5	8.1814	26-27	10.9350	15.16	13.6356	5. 6	16.3363	27-28	19.0899
15.16 16.17	5.5337 5.5866	5.6	8. 2343	27-28	10.9379	16-17	13.6885	6-7	16.3892	28.29	19.1428 19.1958
16.17 17.18	5.5866 5.6396	6-7	$8 \cdot 2873$ $8 \cdot 3402$	$28-29$ 29.30	11.0409 11.0938	17.18	13.7415 13.7945	7.8 $8-9$	16.4422 16.4951	$29-30$ $30-31$	19.1958 19.2488
18.19	$5 \cdot 6925$	8-9	$8 \cdot 3932$	30-31	11.1468	19-20	13.8475	9-10	$16 \cdot 5481$	31-32	19.3017
19.20	$5 \cdot 7455$	9-10	$8 \cdot 4462$	31.32	11.1998	20-21	13.9004	10.11	16.6011		
20-21	$5 \cdot 7985$	10.11	8.4991	ava.		21-22	13.95 .54	11-12	16.6540		
21.22	$5 \cdot 8514$	11-12	8.5521	1-2	11.2527	22-23	14.0063	12-13	$15 \cdot 7070$		

If the noon falls in a common year or before the 20th February, in a leap year, the value to be taten from the Table is the mean between the preceding and succeeding midnights; but if the noon falle after the 29th February in a leap sear, the mean between the values for the two midnights immediately following is to te taken.

Casp. I.]

Theory and Computation

Table XV.-Values of p_{1} (Mean Longitude of Solar Perigee) for 0 hour, January 1.
p_{1} for 0 hour, January 1, $1880=280^{\circ} .874802$.
Motion per Julian year $=0^{\circ} \cdot 01710693$.
Motion for 365 days $=0^{\circ} \cdot 01709295$.

Year	p_{1}	Year	p_{1}	Year	r_{1}	Year	p_{1}
	\bigcirc		0		\bigcirc		\bigcirc
1850	280.3614	1875	280.7892	1900	281.2171	1925	281.6506
51	-3785	76	. 8063	OI	- 2342	26	-6678
52	- 3956	77	-8235	02	-2513	27	-6850
53	-4125	78	-8406	03	-2684	28	-7021
54	-4299	70	-S577	04	-2855	29	- 7194
55	-4470	1880	-8748	05	-3027	1930	-7366
56	-4641	81	-8920	06	-3198	31	-7538
57	- 4812	82	-909	07	-3369	32	-7709
58	-4983	83	-9262	08	-3540	33	-7882
59	- 5154	84	-9431	09	-3711	34	-8054
1860	- 5325	85	-9604	1910	-3882	35	-8225
61	- 5497	86	-9775	11	- 4054	36	-8397
62	- 5668	87	-9946	12	-4225	37	-8570
63	$\cdot{ }^{-5839}$	88	281.0117	13	-4396	38	. 8741
64	-6010	89	.0280	14	-4567	39	-8913
65	-6181	1890	- 0460	15	-4738	1940	- 0081
66	.6352	91	-0631	16	-4909	41	-3267
67	-6523	92	-0802	17	-508I	42	-9429
68	-6694	93	-0973	18	-5252	43	-9602
69	-6866	94	-1144	19	- 5423	44	. 9777
1870	-7037	95	-135	1920	-5594	45	- 3945
71	-7208	96	-1485	21	- 5766	46	$282 \cdot 0117$
72	-7379	97	- 1658	22	- 5937	47	. 0290
73	-7550	98	-1829	23	-6108	48	- 3461
74	-7721	99	- 2000	24	-6395	49	-0694

The values from 1024 onwards depend on the new formuln in para 05 . They are shown in italics in Table XV.

The values for Jan. 1at computed by the new formula, were in excess of those published in the old edition of the table by 0.0055 in 1923, 0.0064 in 1938 and 0.0075 in 1949.

The tabular values were accordingly corrected by interpolation from the above to the new values.
These values may also be obtained from the N. Almanac which will usually be available in time for any particular year's computations.

Table XVI.-Increment of p_{1} since 0 hour, January 1, for certain Days of the Year.

Motion for 1 day $=0^{\text {ºn }}$. 00004708845 (new formula).

Date	Increment	Date	Iucrement	Date	Iucrement	Date	Increment
	\bigcirc		\bigcirc		0		0
Jent. 10	0.00042	A pr. 10	0.00464	July. 9	0.00885	Oct. 7	0.01307
" 20	-0cor9	20	-00510	", 19	-00933	" 17	-01353
F'eb 30	-00136	. 30	-00557	, 29	-00979	N' 27	-01400
Feb. 9	-00183	Mny 10	- 00604	Alıg. 8	- orga 6	Nov. 6	-01447
Mir. ${ }^{19}$	- 00229	20	-00651	$\cdots 18$	-01472	" 16	-01494
Minr. 1	-00276	${ }^{\prime \prime} \quad 30$	-00698	- 28	-01119	" 26	-01541
$\because 11$	-00323	June 9	-00745	Sept. 7	-01160	Vec. 6	-01588
" 21	-00370	" 19	-00791	,. 17	-01213	-. 16	.01634
" 31	-00417	" 29	-00838	" 27	-01860	" 26	-01681

The Tides

Table XVII.-Values of I, ν and ξ, corresponding to N.

\boldsymbol{N}	\boldsymbol{I}	ν	ξ	N	N	I	ν	$\boldsymbol{\xi}$	N	N	1	ν		N
0	-		\bigcirc											
0.0	28.6020	$0 \cdot 000$	$0 \cdot$	360	30'5	$28 \cdot 005$	5.564	5-017	329.5	5	$25 \cdot 351$	10.131	9'196	299.5
0.5	28.6	0.0940	$0 \cdot 084$	359.5	$31^{\circ} \mathrm{O}$	27.985	$5 \cdot 651$	5.095	329.0	6r.0	26.316	10'194	9.255	299.0
1	28-601	0.1880	$0 \cdot 169$	$359 \cdot 0$	31.5	27-965	5.736	5•173	$328 \cdot 5$	61.5	$26 \cdot 280$	10.256	$9 \cdot 313$	$298 \cdot 5$
1.5	$28 \cdot 600$	$0 \cdot 381$	$0 \cdot 253$	$358 \cdot 5$	$32 \cdot 0$	37'945	5-822	5.25I	$328{ }^{\circ}$	62.0	26. 245	$10 \cdot 318$	9.370	$298 \cdot 0$
$2 \cdot 0$	28.599	$0 \cdot 3750$	$0 \cdot 337$	358.0	$32 \cdot 5$	$27 \cdot 925$	$5 \cdot 907$	$5 \cdot 328$	$327 \cdot 5$	$62 \cdot 5$	26-209	10.379	9.427	$297 \cdot 5$
2.5	28.598	0.468	$0 \cdot 421$	357 '5	$33^{\circ} \mathrm{O}$	$27 \cdot 904$	$5 \cdot 992$	$5 \cdot 406$	327.0	63.0	26.173	10.440	9.484	$297{ }^{\circ}$
$3 \cdot 0$	$28 \cdot 596$	0.563	$0 \cdot 506$	357	$33 \cdot 5$	$27 \cdot 884$	6-077	$5 \cdot 482$	$326 \cdot 5$	63.5	26.137	$10 \cdot 500$	9-539	$296 \cdot 5$
$3 \cdot$	$28 \cdot 59+$	$0 \cdot 636$	$0 \cdot 590$	356-5	$34^{\circ} \mathrm{O}$	$27 \cdot 862$	$6 \cdot 162$	5•559	$326 \cdot 0$	64.0	26.101	10. 560	9.595	$296 \cdot 0$
$4{ }^{\circ}$	28.59I	$0 \cdot 749$	$0 \cdot 67+$	$356 \cdot 0$	34.5	$27 \cdot 841$	$6 \cdot 246$	$5 \cdot 636$	325-5	$64 \cdot 5$	$26 \cdot 064$	10.619	9.650	$295 \cdot 5$
$4 \cdot 5$	$28 \cdot 589$	$0 \cdot 8+3$	0.758	355-5	$35^{\circ} \mathrm{O}$	27-819	$6 \cdot 330$	5-712	325.0	65.0	26.027	10.677	9•705	295*
5.0	28.585	$0 \cdot 936$	0.842	355 0	35.5	27-797	6.414	5-788	324.5	65.5	25.990	$10 \cdot 735$	9.759	294'5
$5 \cdot 5$	$28 \cdot 582$	30	0.926	354'5	36.0	27-775	6-497	5.864	324.0	66.0	25.953	10'793	9.812	294.0
$6 \cdot 0$	$28 \cdot 578$	1-123	$1 \cdot 010$	354.0	$36 \cdot 5$	27-752	6.580	5.939	323.5	$66 \cdot 5$	25.916	10.849	9.865	293.5
$6 \cdot 5$	$28 \cdot 574$	$1 \cdot 2$	$1 \cdot 0$	353	$37 \cdot 0$	27-729	6.663	6-015	323.0	67.0	$25 \cdot 878$	10.906	9.918	293.0
$7{ }^{\circ}$	$28 \cdot 570$	I 310	$1 \cdot 178$	$353 \cdot 0$	37-5	$27 \cdot 706$	$6 \cdot 745$	6-090	322.5	67	25.841	$10 \cdot 961$	9.970	$273 \cdot 5$
$7 \cdot 5$	$28 \cdot 565$	1.403	$1 \cdot 262$	$352 \cdot 5$	38.0	$27 \cdot 682$	6-828	6.164	322.0	68	$25 \cdot 803$	11.016	10.02 I	292.0
$8 \cdot 0$	$28 \cdot 560$	1-496	$1 \cdot 346$	352.0	38.5	27.658	$6 \cdot 90$	6-239	321-5	$68 \cdot 5$	25'765	11.070	10.072	291.5
$8 \cdot 5$	$28 \cdot 555$	1.50	1.430	351-5	39	$27 \cdot 634$	6.991	6.313	$32 \mathrm{I} \cdot 0$	69	25'726	II-124	10.123	291.0
9.0	$28 \cdot 549$	1.683	1-514	$351 \cdot 0$	39. 5	$27 \cdot 610$	7-072	$6 \cdot 387$	320.5	69.5	$25 \cdot 688$	11-177	$10 \cdot 173$	$290 \cdot 5$
9.5	$28 \cdot 543$	1-776	I-598	350	$40 \cdot 0$	27-585	$7 \cdot 153$	$6 \cdot 461$	$320 \cdot 0$	70	25.649	II 2130	22	$290 \cdot 0$
$10 \cdot 0$	29-537	$1-869$	1.681	35	40	$27 \cdot 560$	$7 \cdot 234$	6-534	319.5	70	25.610	11.282	71	289.5
10°	$28 \cdot 530$	$1 \cdot 962$	$1 \cdot 765$	349	41.0	$27 \cdot 535$	$7 \cdot 314$	6	319.0	71	25.571	11.333	10.319	289.0
11	$28 \cdot 523$	2.054	1-84	349	41	$27 \cdot 510$	$7 \cdot 39+$	$6 \cdot 6$	318.5	71.5	25.532	II $\cdot 383$	10.366	- 5
11	28.516	$2 \cdot 147$	1-932	34	$42 \cdot 0$	$27 \cdot 484$	$7 \cdot 473$	6.753	318.0	7	$25 \cdot 493$	11.433	10.414	$288 \cdot 0$
12	28.508	$2 \cdot 240$	$2 \cdot 015$	348	42.5	27.458	$7 \cdot 553$	$6 \cdot 825$	317.5	72.5	25.453	11.482	10.460	$\cdot 5$
12.5	28.500	$2 \cdot 33$	$2 \cdot 09$	347	$43^{\circ} \mathrm{O}$	$27 \cdot 432$	$7 \cdot 631$	$6 \cdot 897$	317.0	$73 \cdot 0$	$25 \cdot 413$	11.531	$10 \cdot 506$. 0
13	$28 \cdot 492$	$3 \cdot$	$2 \cdot 1$	347	43	27.405	7-710	6.969	$316 \cdot 5$	73	25.374	11.579	10.551	286.5
13	$28 \cdot 483$	$3 \cdot 5$	$2 \cdot 265$	$3+6$	$44^{\circ} \mathrm{O}$	$27 \cdot 378$	7-788	$7 \cdot 040$		74.0	25.334	11.626		286.0
14	28.475	$2 \cdot 609$	$2 \cdot 348$	$3+6$	44.5	$27 \cdot 351$	$7 \cdot 866$	$7 \cdot 111$	$315 \cdot 5$	74	$25 \cdot 293$	11-673	10.640°	285.5 285.0
14.5	28.455	$2 \cdot 701$	$3 \cdot 431$	34	$45 \cdot 0$	$27 \cdot 324$	7.943	$7 \cdot 182$	315.0	75	$25 \cdot 253$	1.1979	$10 \cdot 684$	285.0 28.5
15.0	$28 \cdot 456$	$2 \cdot 793$	$2 \cdot$	31	$45 \cdot 5$	$27 \cdot 296$	$8 \cdot 020$	$7 \cdot 253$	314.5		25-213	11-764	$10 \cdot 726$	284.5
15	$28 \cdot 44$	$2 \cdot 885$	$2 \cdot 59$	344	46.0	27-268	8-097	$7 \cdot 323$	314.0		25-172	11-809		$\cdot 0$
16	24.4 .36	2.977	$2 \cdot 67$	344	$46 \cdot 5$	27.210	8-173	$7 \cdot 39^{2}$	313.5	76.5	25-131	11.852	10.811	283.5
16	$24 .+35$	3.069	$2 \cdot 76$	343	47.0	27-212	$8 \cdot 249$	$7 \cdot 462$	31	77	$25 \cdot 090$	11.895	10.852	283.0
17	28.414	3.160	$2 \cdot 8.4$		$47 \cdot 5$	$27 \cdot 183$	$8 \cdot 331$	$7 \cdot 5$	$312 \cdot 5$	77	25.049	11.938	10.892	282.5
17	$28 \cdot+03$	3.251	$2 \cdot 927$		$48 \cdot 0$	$27 \cdot 154$	$8 \cdot 399$	7.600	312-0	78.	$25 \cdot 008$	11.980	10.932	282.0 381.5
$18 \cdot a$	28.392	3.34	3-009		$48 \cdot 5$	27-125	$8 \cdot 474$	7-668	311.5	78.5	$24 \cdot 966$	12.02 t	10.971	$38 \mathrm{I} \cdot 5$ 28 I .0
18	18.380	$3 \cdot 433$	3		$49 \cdot 0$	27-005	$8 \cdot 548$	$7 \cdot 736$	311.0	79	$24 \cdot 925$	$12 \cdot 061$	11.009	28 I .0
19	$28 \cdot 368$	3.514	$3 \cdot 1$	34	47.5	$27 \cdot 06 \mathrm{~b}$	$8 \cdot 622$	$7 \cdot 804$	31		24.883	$12 \cdot 100$	11.047	80.5
19	$28 \cdot 356$	3.615	3-255	$340 \cdot 5$	50.0	$27 \cdot 036$	$8 \cdot 605$	$7 \cdot 871$	31	80	24.841	12	$11 \cdot 084$	180.0
20	$28 \cdot 343$	$3 \cdot 705$	3-337	$34^{\circ} \cdot$	50° :	$27 \cdot 006$	$8 \cdot 768$	$7 \cdot 9.38$	$309 \cdot 5$	80.5	$2+800$	12.177	121	279.5 270.0
$30 \cdot$	$28 \cdot 330$	3.796	3.418	$339 \cdot 5$		26-975	8.841	8.05	$309 \cdot 0$		24.757	12.214	IIIS7	279.0
21	38-317	3.886	$3 \cdot 500$	$339 \cdot 0$	$51 \cdot 5$	$26 \cdot 944$	4-913	8.07 I	303 . 5	81	$24 \cdot 715$	12.251	11-192	278.5
21	$28 \cdot 303$	3.976	3-588		$52 \cdot 0$	26.913	$8 \cdot 985$	$8 \cdot 1.37$	309.0	R_{2}	24.673	$12 \cdot 287$	11-227	278.0
23	28.389	4.066	3.662	333.0	$52 \cdot 5$	26.832	9.056	$8 \cdot 203$	$307 \cdot 5$	82	24.631	$12 \cdot 322$	11.26s	277.5 377.0
22.5	$28 \cdot 175$	4.156	3-7+3	$337 \cdot 5$	53.0	26.851	9-127	$8 \cdot 26$	$307 \cdot 0$	83.0	$24 \cdot 588$	$12 \cdot 356$	11.294	
13.	$28 \cdot 260$	+.2.45	$3 \cdot 324$	337.0	$53 \cdot 5$	$26 \cdot 819$	9.197	8-3.33	306.5	83.5	2.1 .545	$12 \cdot 389$	11.326 11.358	276.5 276.0
23.5	$28 \cdot 245$	$+.335$	$3 \cdot 905$	336	54°	$26 \cdot 787$	9-267	$8 \cdot 397$	306.0	84.0	24.503	12.422	$11 \cdot 358$	$276 \cdot 0$ 275.5
24	28.230	$4 \cdot 4{ }^{-1}$	$3 \cdot 08$	$336 \cdot 0$	5+ 5	$26 \cdot 755$	9-336	$8 \cdot 461$	305-r		24.460	12.454	11.389 15 1.419	$275 \cdot 5$ $275 \cdot 0$
34	28.215	$4 \cdot 51$	$4 \cdot 0$	335.5	$55 \cdot 0$	$26 \cdot 723$	$9 \cdot 405$	$8 \cdot 525$	$305 \cdot 0$		24.417 24	12.485	11.419 11.449	275
25.0	$28 \cdot 199$ $38 \cdot 183$	4.60	+1 4.22 4	335 ${ }^{\circ}$	$55^{\circ} \mathrm{S}$	$26 \cdot 690$	$9 \cdot+74$		304.5	8 85		12.515 12.545	11.449 11.478	27
26.0	28.166	$4 \cdot 770$	4.306	334.0	56.5	$26 \cdot 62+$	$9 \cdot 609$	$8 \cdot 713$	303'5	86.5	$24 \cdot 187$	12.573	11.506	273
$26 \cdot 5$	28.149	$4 \cdot 867$	$4 \cdot 386$	333.5	$57 \cdot 0$	26.591	$0 \cdot 676$	8.775	$303 \cdot 0$	87	24-244	12.601	11.533	$273 \cdot$
27.0	28.132	+.955	$4 \cdot+66$	313.0	57.5	26.537	$9 \cdot 7+3$	8.836	$302 \cdot 5$	87.	24.200	$12 \cdot 628$	11.560	272. 272.
$27 \cdot 5$	28.115	$5 \cdot 043$	4.545	$332 \cdot 5$	58.0	25.533	$9 \cdot 809$	$8 \cdot 897$	302.0		24.157	12.654		27
		130	$4 \cdot 624$	332.0		49	9.874	$8 \cdot 95$	$301 \cdot 5$		24.11			
28.5	28.079 28.061	$5 \cdot 305$	$4 \cdot 782$	$331{ }^{\circ}$	59.5	$26 \cdot 455$ $16 \cdot 421$	$9 \cdot 939$ $10 \cdot 004$	9.078	$300 \cdot 5$	89.5	24.026	13-728	11.635 11.659	271.0 270
29.5	$28 \cdot 043$	$5 \cdot 391$	4.861	$330 \cdot 9$	60.0	26.386	$10 \cdot 068$	9-137	$300 \cdot 0$	90.0	23.983	129751	11.681	270
	28.034	478)	4.93	33										

$\boldsymbol{N} . \boldsymbol{B} \rightarrow \boldsymbol{I}$ is always positive. When N is between 0° and $180^{\circ}, \nu$ and ξ are posilive; when N is between 180° and 360°, and ξ are negative.

Chap. I.]
Theory and Computation
Table XVII.-Values of $\boldsymbol{I}, \boldsymbol{v}$ and ξ, corresponding to N-(Continued).

N	1	ν	ζ	N	N	I	ν	ζ	N	N	I	ν	ξ	N
		772	. 704	26	12	1283	$2 \cdot 205$	II 1.378	9,5					
		12.793	11.725	269	121	21-241	$12.25+$	11.342		151				
915	23.850	12.814	11.745	268.5	121.5	$21 \cdot 199$	12.211	11.304	238.5	151.5	19.082	7.523	-17	
920	23.806	12.833	11.765	268	122	$21 \cdot 157$	12.168	11.266			19.056			
92.5	23.761	12.85	$11.78{ }^{\text {a }}$	267.5	12	21.115	12.123	11.226	$237 \cdot 5$	152	19.030	7.29	6.809	5
93.	23.717	12.869	11.802	267.0	12		12.078	II.186						
93.5	23.673	12.88	11.819	$266 \cdot 5$	123.5	21.032	12.031	$1{ }^{1 \cdot 1}$	$236 \cdot$	153.5	18.981	7.0		
940	23.628	$12 \cdot 901$	11.835		124°		11.983			$15+$	18.956			
94.5	23.584	12.916		265.5	124.5	$20 \cdot 9+9$	11.933	11.057	$235 \cdot 5$	$15+5$	ז8.933	6.83	6.380	205.5
$\begin{aligned} & 95 \cdot 0 \\ & 95 \cdot 5 \end{aligned}$	23.539	12.930 12.943	11.866 11.880	265.0	${ }_{125} 125^{\circ}$	$20 \cdot 908$ 20.867	[1.883	(1-012	235.0	${ }^{1} 555$	18.909 I 886	6.71 6.50		
96.0	23.	12.955	11.893		12	20.826	11.778	10.918	23		18.86	6.4		
$96 \cdot 5$	$23 \cdot 4$	12.96	11.905	$263 \cdot 5$	126.5	$20 \cdot 786$	11.724	10.869	233	156	18.	6. 35		
97.0	$23 \cdot 36$	12.976	II.916	2630	127%	20.746	11.669	10.820		157	18.8	6.23	5	
97.5	$23 \cdot 316$	12.985	11.927		127.5		11.612	10.769	23			16		
${ }_{06} 8.5$	23.271	${ }^{12} 12.99+$	11.936		128.0	20	11.555	$1{ }^{10.777}$	$232 \cdot$	158	18.777			
98.5	$23 \cdot 227$	$13^{\circ} \mathrm{OO}$	11.945	261.5	128.5		11.49	10.664	2315	158	18.756			
99.0	${ }^{23 \cdot 182}$	${ }^{13} 1007$	11.953		i29	$20 \cdot 586$	$11 \cdot 36$	${ }_{10}^{10-65}$	231	15	18.736 18.76			
$\underline{100.5}$	$23 \cdot 137$	${ }^{13} \cdot{ }^{\circ} 13$	11.960		129.5		11.374	$10 \cdot 554$	$230 \cdot 5$	15	18.716 18.69			
	23.092	${ }^{13} \cdot 1017$	11.966				$11 \cdot 312$	${ }^{10} 498$	2300	160.0 160.5				
100.5 1010	23.047	${ }_{1}^{13} 3^{\circ} \cdot 021$	11.971 11.975	2595	13	20.469 $20 \cdot 430$	11.248	104401038	229.5	$1 \begin{aligned} & 160.5 \\ & 161.0\end{aligned}$	188.67 18.660			
	22.	13.024	11		$131 \cdot 5$	$20 \cdot 392$	11.18	$10 \cdot 322$	228	161.5	$18 \cdot 642$			
$102 \cdot$		13				$20 \cdot 353$	11.05	$10 \cdot 261$	228					
10			11.983	25	I32.5	20.315	${ }^{10} 988$	${ }_{1}^{10 \cdot 199}$	227	16	${ }_{1}^{18.607}$	4.85	-531	
10	22.				13		[10.912		226	16	${ }_{\text {I }}^{18.591}$			
104.0	$22 \cdot 734$	${ }^{13} \cdot{ }^{17}$	11.982	256.0	13	20.203	10.769	$10 \cdot 005$	226	16	18.55	-45	$4 \cdot 164$	6.0
$104 \cdot 5$	22.689	13.012	11.979	$255 \cdot 5$	134.5	$20 \cdot 166$	10.696	9.939	225	$16+5$	${ }^{1} 8554$	323		
1050	$22 \cdot 644$	${ }^{13}{ }^{\circ} 006$	11-976	255°	135°	$20 \cdot 129$	10.622	9.871	22	165.0	18.529			
$105 \cdot 5$	22.599	$1{ }^{13} 000$	11.972	$254 \cdot 5$	$135 \cdot 5$		$10 \cdot 546$	9.802	$224 \cdot 5$		18.515			
	$22 \cdot 55+$	12.992	11.967	$254{ }^{\circ}$	136	20.056	10.469	9.732	$22 \cdot 0$	166	18.501 188 188	-		
106	$22 \cdot 510$ 22.65	${ }^{12} 12.983$	11.961	25	136	20.020	10.391	${ }^{9} 966$	$223 \cdot 5$		18.487)		
107.0	22.465	$\xrightarrow{12.974}$	11.954	咗	$137{ }^{\circ}$	19.984	10.312 0.232	9.598	223	167.0	$1{ }^{18} 845$	3.651		
107.5 1080	22.320	12.03]	11.946 11.937	25	123		${ }^{10.232}$		$222 \cdot 5$	1167.5		3.51		
108	22.331	12.938	11.927		${ }_{13} 3.5$	19878	10.068	9.364	$221 \cdot 5$	168.5	18.439	$3 \cdot 24$		
1090	22.287		11.916	25	'390	$19 \cdot 84$	9.98	9.287		169.0	$1{ }^{18} 428$			
1095	22.242				I 39		${ }_{9}^{9.899}$	9.209 9.130 1	20	167.5				
110	22.198	$12 \cdot 892$ 12875	$1 \begin{aligned} & 11.891 \\ & 11.877\end{aligned}$	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	[1400	$\begin{aligned} & 19.77 \\ & 19 \cdot 742 \end{aligned}$	9.813 9.725	91130	219.5	180.0	$18 \cdot 497$ 18398			
1	$22 \cdot 109$	12.85	11.862		141°	19.7	9.637	8.969		71.0	18.388			
111.5	22.065	$1{ }^{1} 2837$	11.846	24	1415	19.675	9.547	8.837	21	17 I 5	18.380			
112.0	${ }^{22.021}$	128817 127	11.829	248	1420	$19 \cdot 642$	9,459	8.803		\%2.	118.372			
112.5	21.976	$12 \cdot 705$	11.811	2475	$142 \cdot 5$	19.610	9.365	8.719	$217 \cdot 5$	172.5	18.364			
113.5	${ }_{21}^{21.88}$	1272 12748	11792 11.772	246	${ }_{143}^{143}$	19.577 19.545		8.546	2170	173 173.5 1	18.357 8.350	${ }^{4} 8$		
1140	${ }^{21.845}$	$1{ }^{12} 723$	11.750	$24^{\circ}{ }^{\circ}$	144.0	19.5		$8{ }_{8}{ }^{45}$	216.	174.0	18.344	-707		
114.5	21.801	12697	11.728	$2+5 \cdot 5$	1445	19.483	8.986	8.370	215	174.5	18.388	. 566		
115.0	21.757	12.670			$145^{\circ} \mathrm{O}$	19.452	8.888	8.280	215	175.0	18.333	,		
1155 116.0	21.713	$\xrightarrow{12 \cdot 642}$		$244 \cdot$	145	19922		8.189	21	175.5	18.328			
16.0 116.5	21.670 21.627	边 $\begin{aligned} & 12612 \\ & 12.591\end{aligned}$	[11.65		$1 \begin{aligned} & 146.0 \\ & 146.5\end{aligned}$	19.391 19.361	8.5890	8.097 8.004	21.		18.324 18.320			
117	21.583	12.550	11.		147%	19.332	8.487	7.910	213 .0	177.	18.31	- 5		
117.	21.540		11.57	$242 \cdot 5$	147.5	$19 \cdot 302$	8.384	7.814	21		18.315	$\bigcirc \cdot 713$		
118	21.499	12.483		2420	148.0	19.273	8.280	7.718	2120	175.	18.312	-571		
18	21.454	12		241	148.5	19.245		7.621		178.5	$8 \cdot 3$			
		124	11.488	24	149.	19.217	8.069	7.523		179		$0 \cdot 286$		
120.0	21.326	73	(11.447		$1 \begin{aligned} & 1+9.5 \\ & 15000\end{aligned}$	$\left\lvert\, \begin{gathered}19 \cdot 18 \\ 19.1\end{gathered}\right.$	7.96	7.424		179.5 180.0	8.309 8.308			

$N . B .-I$ is always positive. When N is between 0° and $180^{\circ}, v$ and ξ are positive; when V is between 180° and $360^{\circ}, v$ and ξ are negative.

Cuap. I.]
The Tides
Table XVIII. (1)-Values of $1 / f$ and f corresponding to various values of I, to be used in computing H and R for the Tides M_{2}, N, $2 \mathrm{~N}, \nu, \mathrm{MS}, 2 \mathrm{SM}$ and Luni-Solar fortnightly.

Argument $I / f=\frac{\operatorname{Cos}^{4} \frac{1}{2} \omega \operatorname{Cos}^{4} \frac{1}{2} i}{\operatorname{Cos}^{4} \frac{1}{2} I}$

Values of	$1 / \mathrm{f}$		f		Values of	1/f		f	
$18^{\circ} 18^{\prime} 30^{\prime \prime}$	0.96354		1.03784		$23^{\circ} 5$	0.99630		$1 \cdot 0037$	
18.4	. 96403		${ }^{-03731}$		${ }^{3} .6$. 99703	73 72	-00298	
${ }^{5}$. 96645	55	-03672	59	7	-99775	72 74	-00225	73 73
. 6	.96513	56	-03613	60	8	. 998849	73	-00152	74
. 78	.96569	56 56 56	$\begin{array}{r}-03553 \\ -03494 \\ \hline\end{array}$	59	$24 \stackrel{9}{0}$. 999922	73 74 74	.00078 .00004	74 74 74
9	.96680	56 56	${ }^{-03434}$	60 60	$24 \cdot 1$	- 1.00079	74	-0.99930	74 75
19.0	-96736	57	-03374	${ }_{6}^{60}$	$\cdot 3$. 00145	75	.99855	79
$\cdot 1$. 96793	57	-03313	61 61	$\cdot 3$	-00220	75 76	-99781	76
$\cdot 2$.96850	58	-03252	61	4	-02296	${ }_{76} 76$	-99705	36
. 3	.96008	57 58 58	03191 03129	62	. 5	${ }^{.00372}$	76 76 76	. 999629	76 75
. 5	-97023	58 59 59	-03068	61 62	7	. 02525	77 76	-99478	75 76
6	-97082	59 59	-03006	63	8	-06061	${ }_{78}^{76}$. 99402	78
. 8	-97141	58	-02943	61 61 61	25.9	-00679	${ }_{78}$.99326	71
. 8	-97199	60	${ }^{02882}$	63	${ }^{25}$ - 1	.00757	78	.99249	77
20.9	-97259	59 69 69	-02819	63 64 64	-1	+00835 -00913	78	-99095	77 78
$\cdot 1$	-97379	61 60	-02692		$\cdot 3$	-00993		-99017	${ }_{78} 7$
$\cdot 2$	$\bigcirc 97+39$	${ }_{6} 6$	${ }^{0} 26288$	64	. 4	.01072	79 79	.98939	77
- 3	-97500	6_{1}	-02564	64	. 5	-01151	80	${ }^{.} 988882$	79
4	.97561	6_{1}	.02500 .02436	64	. 7	-01231 -01312	81	$\begin{array}{r}.98783 \\ .98705 \\ \hline\end{array}$	78
- 6	-97622	62 62	-02436	65 65	$\stackrel{7}{8}$	-01393	81 81 81	-98626	79 79
. 7	-977+6	62 62	-02306		-9	-01474	888	-98547	79
. 8	. 978788	${ }_{6} 6$	-02241	65	$\begin{array}{r} \\ \hline 6 \\ \hline 1 \\ \hline 1\end{array}$	-01556	82	-9846888	8
9	-97871	${ }_{6} 6$	-02175	66	$\stackrel{-1}{2}$	-01638	83	.96388 .98308	80
21.0	97935	64	.02109 .02042		- 2	-01721	82	-98229	79 81 81
.1 .8 	-97999	64 65 65	-02042	66	-3	-01803	84	-98829	81
$\cdot 3$	-98827	65 64	-1909	67 67	-5	-01970	888	-98068	80
4	-98191	65	-101842	67	$\cdot 6$	-205+	84	. 97988	81
- 5	-98256	6	-01775 .01707	68	$\cdot 8$	${ }^{-22138}$	85	.97907	81 81 81
6	-98321	66	.01707 -1639	68	$\stackrel{8}{9}$	-02223	85	. 977744	82 82 82
. 8	-98453	66	-01572	67	27 \%	-02308	86	-97662	8281828
. 9	-98519	67	-01503	69 69	$\cdot 1$	-02480	888	-97580	82
22.0	-98586	67	-01434	69	$\cdot 2$. 02565		-97498	82
$\stackrel{1}{-1}$	-98653	68		69 69	3	-02653		. 977416	83
. ${ }^{-3}$	-98721	67		70	. 4	-02740	88	.97333	833
${ }^{-4}$	-08857	69	-1157	79	. 6	-02916	88 89 89	-97167	84
. 6	-98925	69	-01087	70	7	03005	88	. 977083	83
. 7	98994 .95063	69	-00945	71	-8	-03093	90	.97000	8
- 8	-99133	70	${ }_{0}^{009875}$	70	$28{ }^{9}$	-03183	89	. 96832	84 85 85
9	-99203	70	-00803	72	$\cdot 1$	03363	91	.96747	85
230	-99973	71	-0732	71 71	$\cdot 2$	-03453	${ }_{91}^{90}$.96662	85
$\stackrel{1}{-2}$	999444	71	${ }^{-00601}$	71 7	$\cdot 3$	-03544	$9{ }_{91}^{91}$.96577	85 85 85
$\stackrel{.}{ } \cdot$. 994486	71	-00589	73	${ }_{5}$	$\begin{array}{r}\text {-03635 } \\ \\ \hline 03727\end{array}$	92	-96407	85 86
- 4	-99558	8 $\begin{gathered}72 \\ 92\end{gathered}$	-0044	72 73	$\cdot 6$	-03819	92	. 96321	
. 5	-99630		-0371	73	$28^{\circ} 36^{\prime \prime} 6^{\prime \prime}$.03821		.96320	

Chap. I.]
Theony and Computation

Table XVIII. (2)-Values of $1 / f$ and f corresponding to various values of I, to be used in computing H and R for the Tides O and Q . Also used in determining $1 / f$ for the Tide M_{1}.

Argument $1 / f=\frac{\operatorname{Sin} w \operatorname{Cos}^{2} \frac{1}{2} w \operatorname{Cos}^{4} \frac{1}{2} i}{\operatorname{Sin} I \operatorname{Cos}^{2} \frac{1}{2} I}$.

Values of I	1/f		f		Values of J	1/f		f	
$18^{\circ} 18^{\prime} 30^{\prime \prime}$	1.24126		0.80563		$23^{\circ} \cdot 5$	0.99434		J 00569	
18.4	-23563		.80932		. 6	-99073	361	.00936	
$\cdot 5$	-22951	612	-81333	401	. 7	. 98715	358	.01303	367
. 6	-22350	601	-81734	401	. 8	. 98360	355	-01667	364
7	-21753	597	-82135	401	$\cdot 9$	-98009	351	.02032	365 364
-8	.21163	590 582	-82534	399 399	24.0	.97660	349	.02396	364 362
9	-20581	582 578 58	. 82933	399	${ }^{2} \cdot 1$. 97316	344 342	-02758	362 363
19\%	-20003	578	.83331	398 398	. 2	-96974	342 339	-03121	363 361
1 .2	-19435 -18870	5	. 83729	398 397	-3	-96635	339 335	-03482	361 361
- 2	$\cdot 18870$. .18313	557	- 84126	397	$\cdot 4$	-96300	335	-03843	361
. 3	$\cdot 18313$ $\cdot 17762$	551	-84523	397	. 5	-95966	334 329	${ }_{-0420+}^{+}$	359
. 5	-17214	548	-85314	395	. 7	.95637	327	-04921	358
. 6	-16676	538	. 85708	394	.8	. 94986	324	-05280	359
$\cdot 7$	-16142	534	.86102	394	-9	-94666	320	-05636	350
. 8	-15614	528	. 86496	39.	25.0	-94347	319	-05992	356
. 9	$\cdot 15092$	52	. 86889	393	-1	-94033	314	-06347	355
2000	-14573	5	-8728I	392	- 2	.93720	313	-05702	355
1	$\cdot 14064$	509	-87672	391 390	$\cdot 3$	-93410	310	-07055	353 353
. 2	-13557	507	-88062	390	$\cdot 4$	-93103	307	-07408	353
. 3	-13056	501 495	-88453	391	. 5	-92798	305	-07761	353 351
-4	-12561	495	-88842	389 389	6	-92497	301	-08112	351 351 351
. 5	-12069	492 484	-89231	389 388	. 7	-92198	299	-08463	351
. 6	-11585	484 480	-896r9	388 387	. 8	-91902	296	-088ı2	349 349
. 7	-11105	4876	-90006	387 387 387	-9	-91608	294	-09161	349 349
. 8	-10629	476 470	-90393	$\begin{array}{r}387 \\ 386 \\ \hline\end{array}$	26.0	-91316	298	009510	349
-9	-10159	476	'90779	386 385	$\cdot 1$	-91028	288	-09857	347 346
100	-09692	459	-91164	385 385	$\cdot 2$	-90742	286 284	-10203	346 346
$\cdot 1$	-09233	459	$\cdot 91549$	385 384	-3	-90458	284 281	-10549	346 345
$\stackrel{2}{ }$	-08776	457	$\cdot 91933$	385 383	4	-90177	281 280	-18894	345
$\cdot 3$	-08325	457	$\cdot 92316$	383 382 38	$\cdot 5$	-89897	280	-11338	344 $3+3$
-4	-07878	447	-92698	382 382 382	. 6	- 89622	275	-11581	$3+3$ 343
. 5	-07434	444	-93080	382 381	$\cdot 7$	-89347	275	-11924	343
. 6	-66997	4337	-93461	381 381 381	. 8	-89076	271	-12265	341 341
7	-06563	434 430	-93842	381 380 380	$\cdot 9$. 88806	270	-12605	341
8	-06133	430 425	-9+222	380 379	270	. 88538	268	-12946	340 330
$\cdot 9$. 05708	425 422	-94601	379 378	-1	-88273	265	-13285	339 338
220	.05286	422 416	-94979	378 378	- 2	-88010	263	-13623	338 338
$\cdot 1$. 04870	416 413	-95357	378 377 377	3	. 87750	260	-13961	338 336
$\cdot 2$	-0+457	413	-95734	377 377	-4	. 8749	269 257	-14297	3336
$\cdot 3$. 04047	410 404	-96111	377	. 5	. 87234	257 253	-14634	336 334
$\cdot 4$.03643	40 402	-95486	375 375	$\cdot 6$.86981	253 252 258	-14968	334 334
. 6	.03241	402 396	$\cdot 96861$	375 374	$\cdot 7$. 86729	252 251 2.51	-15302	334 334
. 7	. 02845	394	$\cdot 97235$	374 373	-8	.86478	2.51	.15636 .15068	332
.7	. 02451	394	${ }^{9} 97608$	373 373	$\cdot 9$.86231	246	-15968	331
. 9	. 02061	386	'97981	372	$28 \cdot 0$.85985	244	-16299	331
$3 \cdot 0$. 01675	383	- 98353	372	$\cdot 1$.857+1	242	. 16830	331
$\cdot 1$.01292	377	-98005	370	2	. 854569	239	-17289	328
$\cdot 2$	-00539	376	-9095	369	- 4	. 85022	238	.17617	328
3	-0167	372	- 99834	370	. 5	. 87785	237	-17945	328
- 4	0.99799	368 365	1.00202	368	$\cdot 6$	-845i	234	.18272	327
-	. 9944	365	$\cdot 00569$	367	$28^{\circ} 36^{\prime} 6^{\prime \prime}$	84547		-18277	

Table XVIII. (3)-Values of $1 / f$ and f corresponding to various values of I, to be used in computing H and R for the Tide J ; and for determining k_{1}, used in the preparation of Table XVIII. (6).

Arg ument $1 / f=\frac{\operatorname{Sin} w \operatorname{Cos} w\left(1-\frac{3}{9} \operatorname{Sin}^{2} i\right)}{\operatorname{Sin} / \operatorname{Cos} I}$.

Values of	Iff		f		Values of J	$1 i f$		f	式乌
$18^{\circ} 18^{\prime} 30^{\prime \prime}$	$1 \cdot 20958$		0.82673		$23^{\circ} \cdot 5$	0.98648		1.01371 .01700	
18.4	-20442		. 83028		. 6	. 98329	319 316	-01700	328
- 5	-19882	560 550	. 83416	388 385	.7	.98013	316 313	-02028	327
6	-19332 -18785	550 $5+7$.83801	388 385	-8	-97700	309	-02355	325
$\cdot 7$	-18785	547 539	.$_{4186}$	385 384 38	${ }^{9} 9$	-97391	318 308	-02680	325
8	$\cdot 18246$	539 532	. 84570	384 383 38	24.0	-97083	303	-03005	323
-9	-17714	529	. 84953	383 382	$\cdot 1$. 066780	301	.03328	322
19.0	.17185	529 518	. 85335	38	$\cdot 2$	$\cdot 96479$	297	-03650	320
$\cdot 1$	-16667	515	. 85715	38	$\cdot 3$	-06182	294	-03970	319
- 2	-16152	515	. 86095	380 379	$\cdot 4$	-95888	293	-04289	319
$\cdot 3$	-15643	509 502	. 86474	379 377	- 5	-95595	287	-04608	316
$\cdot 4$. 15141	502 499	.8685ı	377 377	6	-95308	286	-04924	316
- 5	$\cdot 14642$	499 400	. 87228	377 375	$\cdot 7$	-95022	284	.05240	314
. 6	-14152	486	. 87603	375 375	. 8	-94738	279	05554	313
-7	-13666	486 480	. 87978	375 373	$\cdot 9$	-94459	278	-05867	312
. 8	$\cdot 13186$	474	. 88351	375 373	$25 \cdot 0$	-94181	274	-06179	310
-9	. 12712	4742	-88724	373 371	$\cdot 1$	-93907	272	-06489	309
20-0	. 12240	463	.89095	371 370	-2	-93635	269	-06798	308
$\cdot 1$	-11777	459	. 89465	370 369	$\cdot 3$	-93366	266	-07106	306
-2	. 11318	455	. 89834	367	-4	${ }^{9} 93100$	265	. 07412	306
$\cdot 3$	-10863	458 $4{ }^{8}$	-90201	367 367	$\cdot 5$	-92835	260	-07718	303
$\cdot 4$	- $10+15$	445	-90568	366	6	-92575	259	-08021	302
. 5	-09970	438	-00934	364	. 7	-92316	256	-08323	302
6	-09532	435	.91298	364 364	. 8	$\begin{array}{r}\cdot 92060 \\ \hline 91807\end{array}$	253	-08625	300
$\cdot 7$.09097	430	-91662	362	6.9	-91807	252	-08925	299
. 8	. 08667	424	.922024	362 361	26.0	91555	248	-09224	296
-9	. 08273	424	-92385	361	$\cdot 1$	91307	246	-00520	296
21.0	-07821	414	. 93746	359	-2	-91061	243	-09816	295
1	. 07407	412	-93105	358	$\cdot 3$	-90818	241	$\cdot 10111$	293
$\cdot 2$	-06995	406	-93463	356	$\cdot 4$	-90577	240	-10404	292
$\cdot 3$.06589	406 402	.93819	356	+ 6	.90337	236		290
4	.06187 .05787	402	-94175	356 355	. 6	. 80101	234	-10986	290
. 5	-05787 -05395	392	-94530	353	.7	.89867	232	-11276 -11563	287
6	-05395	391	-94883	352	. 8	.89635	329	-11849	286
. 8	-05004	385	-95235	351	270	-89406	228	.12135	${ }_{286}^{286}$
-8	.04619 .04238	381	-95586	349	27.0 .1	. 888958	224	.12419	284
22.0	.03859	379	. 95638	349	-2	. 88730	224	. 12702	283
22	.03487	372 370	. 96631	347	$\cdot 3$.88510	220 218	-12982	280
- 2	.03117	370 366	. 96978	347	$\cdot 4$. 88892	218	-13262	378
$\cdot 3$	-2751	360 361	.97323	345	. 5	.88075	217	-13540	277
. 4	-2390	361 350	. 97607	344	. 6	.87861	212	$\cdot 13817$	275
- 5	. 02031	359 353	.98010	343	$\cdot 7$. 87649	210	.14092 .14366	274
. 6	.01678	353	.98351	341 340	. 8	. 87439	208	-14366	272
-7	. 01326	$3{ }^{3} 5$	-98691	340 340	. 9	. 87231	207	.14638 -14910	272
-8	00980	34	-99031	340 337	28.0	-87024	203	$\cdot 14910$	269
9	00036	341	. 99368	337 337	$\cdot 1$.86821	202	$\cdot 15179$ -15448	269
230	-00295	335	. 99705	335	- 3	.86619		.15448	267
. 1	0.99960 .99627	335 333	1.00040 .00375	335 335	$\cdot 3$.86420	198	-15715	265 265
, 2	. 99627	329	.00375	333	. 4	.86222	197	.15900	265 264
-3 -4	. 992198	326	-00708	332	. 5	.85831	194	. 16509	264
- 5	. 98648	${ }^{324}$	-01371	331	280. $36^{\prime \prime} 6^{\prime \prime}$. 85828		.16513	

Char. I.
Theory and Computation
Table XVIII. (4)-Values of I / f and f corresponding to various values of I, to be used in computing H and R for the Tide Mf.

Argument $1 / f=\frac{\operatorname{Sin}^{2} w \operatorname{Cos}^{4} 1^{i}}{\operatorname{Sin}^{2} /}$

Values of I	1/f		f		Values of	$1 / f$		f	
$18^{\circ} 18^{\prime} 30^{\prime \prime}$	1.59903		0.62538		$23^{\circ} \cdot 5$	0.99238			
18.4	. 58377		. 63145		${ }^{3} \cdot 6$	$\bigcirc 98450$	788	1.00768 .01579	811
. 5	. 56720	1657 1613	. 63808	663	7	-97607	783	-023792	813 8.5
6	.55107	1613 1599	. 64476	668 670		.96895	772 761	.03207	815 819
. 8	. 53508	${ }_{1571}$. 65146	674	.	.96134	756	-0,4026	88
. 8	. 519397	1543	.65820	676	$\begin{array}{r}24.0 \\ \hline 1\end{array}$.99338	740	-0.0486	824
19.0	. 48865	1529 1490 1	-67175	679 683	$\cdot 2$.943903	735	-06495	885
$\cdot 1$	- +7375	1490	. 67858	683 686	3	-93179	724	.07324	829 831 81
. 2	-45898	1450	. 68554	688	$\stackrel{4}{4}$	-92463		-08155	831 833
$\stackrel{3}{4}$	- 44448	1427	-69232	692	. 5	-91753	${ }_{6} 71$.08088	${ }_{837}^{833}$
$\cdot 4$	-43021 -+1607	$1 \begin{aligned} & 1427 \\ & 1414 \\ & 138 \\ & 1\end{aligned}$. 690624	694	6	.91058	691	.09825	838
. 6	-40229	1378 1367 138	.71316	${ }_{7} 98$	-8	. 89685	682	.11504	841 844 84
. 7	- 38862	1367 1343 1	. 72017	${ }_{703}^{701}$	-	. 89012	673	-12348	844
. 8	- 37519	${ }_{1321}$. 72720	707	25°	.88344	655	.13193	850
20.0	-36198	1310	.73427 .74136	709	$\cdot 1$.87689	650	.14043 .14893	850
20.0	-.34888	1278 128 124 124	.74136 .74849	713	$\cdot 2$.87039	641	$\begin{array}{r}14893 \\ .15747 \\ \hline\end{array}$	854 856 88
. 2	-32343	1267 1247 128	. 75554	715 719	4	.85764	634 629	-16603	858
$\cdot 3$	-31096	1225	.76283	721	5	.85135	617	-17461	${ }_{862}$
. 5	-29871	1216	.77004	723	6	.84518	614	.18323	863
. 6	-27655	$1{ }_{1}^{187}$.77727	728	${ }_{8} 7$.83904 .83300	604	. 290051	865
7	-26291	1187 1158 158	. 79185	730 73 73	9	-82702	598 593	. 20920	869 869
. 8	-25133	1198	.79919	$73+$ 736	26.0	-82109	593 582	-21789	869 874
. 9	-23993	113 L	-30655	737	-2	.81527	578	.22663	875
. 1	$\begin{array}{r}.22862 \\ .21758 \\ \hline\end{array}$	1104	.81392 .82135 8	743	$\cdot 2$.80949	571	. 23538	877
. 2	-20663	1095	${ }^{82889}$	744 747	4	-79814	564	. 24296	${ }_{881}^{881}$
$\cdot 3$	-19584	1079	. 83626	748 750	. 5	79254	560 550	. 26177	${ }_{888}^{881}$
4	-18523	1053	. 84376	752	6	.78704	546	. 27062	888
. 6	-17470 -16441	1029	.85128	757	8	.78158	539	. 279488	890
7	-15420	1021	.86644	759	9	.77086	533	-29729	891
. 8	-14414	1006	. 87405	764	27°	. 76557	529 520	. 30622	${ }_{8}^{893}$
9	-13424	990 983	. 88169	766	$\stackrel{1}{1}$.76037	520 516	-31519	897 898 8
22.00	-1241	961	. 88939	771	$\cdot 2$.75521	516	-32417	898 901
. 1	$\begin{array}{r}.11480 \\ .10527 \\ \hline\end{array}$	953	.89706	772	4	.75010	504	-331818	${ }_{9} 93$
. 3	-09588	939	.904254	${ }_{77} 78$	$\cdot 5$. 74006	500	-34125	904
$\cdot 4$.08663	925	.92032	780	$\cdot 6$	-73514	$\begin{array}{r}492 \\ 480 \\ \hline\end{array}$. 36033	${ }_{0} 908$
. 5	. 07745	898	-92883	${ }_{784}$	7	. 73025	${ }_{483}$	-36942	${ }_{9} 909$
. 7	-06847	892	.93596	${ }_{786}$	-8		477	-37853	914
. 8	-05955	878 878 866 8	-94382	${ }_{7}^{789}$	$\begin{array}{r}98 \\ \hline 9\end{array}$	72005 71591	474	${ }^{-38968}$	916
. 9	04211	866 859 8	.95963	${ }_{793}^{792}$	$\cdot 1$	71125		. 40602	919
23.0	-03352	889	-96756	${ }_{798}^{793}$	$\cdot 2$	-70662	463	-41521	${ }_{923}^{919}$
. 2	-02511	834	-97534	${ }_{800}$. 70205	453	.42444	925
$\cdot 2$	-01677	834 883 81 81	-98354	802	4	. 699752	449	43369 .44295	926
4	. 00043		. 999962	806 806	. 5	. 68859	444	. 445295	929
$\cdot 5$	0.99238	805	1.00768		$28^{\circ} 36^{\prime \prime} 6^{\prime \prime}$. 68852		. 45239	

Chap. 1.]
The Tides
Table XVIII. (5)-Values of i / f and f correṣponding to various values of I, to be used in computing H and R for the Tide $M m$.

Argument $1 / f=\frac{\left(1-\frac{1}{2} \operatorname{Sin}^{2} w\right)\left(1-\frac{3}{3} \operatorname{Sin}^{2} i\right)_{0}}{1-\frac{9}{2} \operatorname{Sin}^{2} I}$

Values of I	I/f				Values of 1	$1 / 6$		f	
$8^{\circ} 18^{\prime} 30^{\prime \prime}$	0.88401		1-13121		$23^{\circ} \cdot 5$	0.98904		1.01108	255
18.4	.88550	163	.12931		. 6	.99155	251 252	$\cdot .00853$	255
-5	. 88713	163	-12723	208	$\cdot 7$. 99407	252	-00597	256
6	. 88879	167	.12512	211	.8	-99660	253 257	-00341	258
$\cdot 7$.89046	167	. 12301	211	${ }^{-9}$. 99917	257	.00083	257
. 8	.89215	169	-12090	211	24.0	$1-00174$	261	$0 \cdot 99826$	259
$\cdot 9$.89384	170	-11877	212	$\cdot 1$	-00435	262	-99567	259
19.0	. 89554	173	-11665	215	-2	.00697	265	-99308	260
$\cdot 1$. 89727	173	11450	215	-3	-00962	267	-99048	262
-2	.89900	173 176	- 11234	216 216	$\cdot 4$.01229	269	-98786	262
$\cdot 3$	-90076	176	-11018	218	-5	. 01498	272	.98524	263
-4	. 90252	178	- 10800	218	. 6	. 01770	274	.98261	263
-5	. 90430	181	-10582	220	$\cdot 7$	02044	275	.97998	264
6	-90611	181	-10362	220	-8	-02319	279	-97734	265
$\cdot 7$	-90792	182	-10142	220	-9	.02598	280	-97469	266
. 8	-90974	185	-09922	220	$25 \cdot 0$.02878	284	-97203	267
$\cdot 9$	-91159	185	-09699	223	-1	.03162	285	.96936	267
$20 \cdot 0$. 91344	187	-09476	224	-2	.03447	288	. 90609	269
$\cdot 1$	-91531	188	-09252	224	$\cdot 3$. 03735	290	.96400	269
- 2	.91719	191	-09028	225	$\cdot 4$. 04025	292	. 96131	269
$\cdot 3$	-91910	192	.08803	227	$\cdot 5$.043'7	296	-95862	271
-4	-92102	193	-08576	228	6	-04613	297	.95598 .95320	271
. 5	-92295	196	-08348	229	$\cdot 7$. 04910	300	. 95320	272
6	. 92491	196	-8119	229	-8	.05210	303	. 95048	272
$\cdot 7$.92687	198	.07890	239	${ }^{\cdot 9} 9$	-05513	305	.94776	274
. 8	-92885		-07660	231	26.0	.05818	309	-94502	275
$\cdot 9$	-93085	201	.07429	231 232	-I	. 06127	310	.94227	275
210	.93286	204	-07197	232 233	-2	.06437	314	. 93952	275
$\cdot 1$. 93490	205	-06964	233 234	-3	.06751	316	. 93677	277
- 2	. 93695	205 207	. 06730	234 236	-4	.07067	318	.93400	277
-3	. 93902	208	.06494	236 335	. 5	-07385	322	.93123	27^{8}
-4	. 94110	209	06259	235 236	. 6	-07707	324	. 92845	279
-5	-94319	213	06023		$\cdot 7$.08031	328	.92566	280
. 6	94532	213	. 05785	238 239	. 8	-08359	330	.92286	280
$\cdot 7$.94746	214	.05546	239 238	.9	.08689	330 332	.92006	280
. 8	.94960	- $\begin{aligned} & 214 \\ & 218\end{aligned}$.05308	238	27-0	.09021	337	$\cdot 91726$	282
. 9	-95178	+ 218	05067	241 242	. 1	.09358	338	.91444	282
22.0	. 95397	($\begin{aligned} & 219 \\ & 221\end{aligned}$	${ }^{0} 4825$	242	-2	.09696	338	-91162	284
-I	. 95618	+ $\begin{aligned} & 221 \\ & 222\end{aligned}$. 04583	242	-3	.10037	341 345	-90878	284
-2	-95840	- $\begin{aligned} & 222 \\ & 224\end{aligned}$	-04341	242	-4	.10382	345 347	-90594	284
$\cdot 3$. 96064	4224	-04098	243	. 5	-10729	347	. 90310	285
4	.96290	- 2268	03853	245	.6	.11081	352 353	-90025	286
-5	.96518	- $\begin{array}{r}228 \\ 230\end{array}$	03608	245	$\cdot 7$	-11434	357	-89739	286
6	. 96748	- $\begin{aligned} & 230 \\ & 232\end{aligned}$	-3362	246	. 8	-11791	357 361	. 89453	288
$\cdot 7$.96960	-232 234	.03115	247	$\cdot 9$	-12152	362	.89165	287
. 8	. 97214	$4 \begin{aligned} & 234 \\ & 236\end{aligned}$	-02866	249	280	. 12514	367	-88878	289
$\cdot 9$. 97450	- 230	.02617	249	-1	-13881	369	-88589	289
$23 \cdot 0$. 97687	$7 \begin{aligned} & 237 \\ & 239\end{aligned}$.02368	249	$\cdot 2$	-13250	369 374	.88300	289
$\cdot 1$	-97926	$6 \begin{aligned} & 239 \\ & 241\end{aligned}$.02118	250 251	$\cdot 3$	-13624	376	.88011	291
-2	-98167	$7 \quad 241$.01867	251 253	$\cdot 4$	-14000	378	.87720	291
-3	-98412	2 245 7 245	. 01614	253 253	. 5	-14378	385	. 97429	292
-4	98657	7 245	.01361	253 253	$28^{\circ}{ }^{6} 6^{\prime \prime} 6^{\prime \prime}$	-14763	3	.87137	
-5	-98904	4247	01108	- 253	$28^{\circ} 36^{\prime} 6^{\prime \prime}$	-14769		87132	

Chap. I.」
Theory and Computation

Table XVIII. (6)-Values of $1 / f$ and f corresponding to various values of I, to be used in computing H and R for the Tide K_{1}.

Argument $1 / f=\frac{1 \cdot 46407 \times k_{1}}{\left\{1+\left(0^{\circ} 46407 \times k_{1}\right)^{2}+0^{\circ} 92814 k_{1} \operatorname{Cos} \nu\right\}^{\frac{1}{2}}} \quad$ where $k_{1}=\frac{\operatorname{Sin} \omega \operatorname{Cos} \omega\left(1-\frac{3}{2} \operatorname{Sin} 2 i\right)}{\operatorname{Sin} I \operatorname{Cos} I}$

Values of 1	$1 / f$		f		Values of I	1/f		f	
$18^{\circ} 18^{\prime} 3011$	1-13424		0.88165		$23^{\circ} \cdot 5$	0.99619		1.00383	226
18.4	-13142		.88385		23 6	. 99395	224	-00609	226
$\cdot 5$. 12835	307	. 88625	238	$\cdot 7$	-99172	22	-00835	227
6	. 12532	303 303	. 88853	238 240	-8	. 98950	222	-01062	224
7	-12229	302	-89103	241	$\cdot 9$.98730	220	-01286	226
8	-11927	299	. 89344	239	24.0	. 98510	217	-01512	225
9 19.0	.11628 .11329	299	.89583	241	$\cdot 1$. 988293	217	-01737	225
19.0	.11329 .11035	294	-89824	237	$\stackrel{.2}{ } \cdot$. 98076	214	.01962	222
$\cdot \cdot 1$	-11035 -10740	295	-90061	240	3	.97862 .97649	213	.02184	224
- 2	-10740	292	-90301	239	$\cdot 4$	-97649	214	.02408	324
$\cdot 3$	-10448	290	-90540	239	$\cdot 5$	-97435	208	.02632	221
$\cdot 4$	-10158	291	$\cdot 90770$	240	6	-97227	210	-02853	222
- 5	. 09867	287	-91019	238	$\cdot 7$	-97017	209	-03075	222
6	-09500	286	-91257	239	-8	-96808	206	-03297	220
$\cdot 7$	-09294	283	-91496	238	$\cdot 9$	-96602	205	-03517	221
8	-09011	282	-91734	238 238	25°	.96396	202	-03738	219
9	-08729	283	$\cdot 91972$	238 240	$\cdot 1$	-96194	203	-03957	220
20°	-08446	278	-92212	237	$\cdot 2$	-95991	201	.04177	218
$\cdot 1$	-08168	279	-92449	239	$\cdot 3$	-95790	200	04395	218
- 2	-07889	275	-92688	239 237	4	-95590	199	-04613	219
-3	.07614	275 274	$\cdot 92925$	237 237	. 5	.95391	196	. 04832	216
. 7	. 07340	274 273	.93162	237 238 238	.6	$\cdot 95195$	I 96	. 05048	217
. 6	07067	271	$\cdot .93400$	237	. 7	-94999	195	-05265	215
$\cdot 6$	-06796	269	-93637	236	-8	-94804	192	.05480	215
. 8	-06527	269	-93873	238	$\begin{array}{r}.9 \\ \hline 6\end{array}$	$\cdot 94612$	193	.05695	216
8	06258	265	-9411	235	26 -	-94419	191	.05126	215
210	.05993	266	-94583	237	$\cdot 2$. 94039	189	.05339	213
$\cdot 1$	-05465	262	${ }^{-9+818}$	235	$\cdot 3$. 93852	187	- 06550	211
$\cdot 2$	-05203	259	-95054	236	'4	-93666	187	-06763	213
3	-04944	257	-95289	235 234	. 5	-93479	18	. 06976	211
4	04687	258	-95523	236	. 6	-93295	183	-07187	210
'5	. 04429	254	-95759	236 234	$\cdot 7$	-93112	182	-07397	211
6	04175	256	-95993	235 235	. 8	-92930	180	-07608	209
7	-03919	250	. 96228	235	$\cdot 9$	-92750	180	-07817	209
8	-03669	250	. 96646	233	27.0	-92570	177	-08026	207
9	-03419	251	-9669+	233	. 1	-92393	178	.08233	209
20\%	-03168	246	. 96929	235 232	$\cdot 2$	$\cdot 92215$		-08442	205
${ }^{1}$	-02922	245	.97161	232 232	$\cdot 3$.92042 .91867	173 175	.08647	206
	.02677	245 246	-97393	232 233	$\cdot 4$.91867	$17+$.08853	206
3	.02431	242	.97626 .97858	232 232	- 5	-91693	172	.09059	205
$\cdot 4$	-02189 -01948	242	.97858 .98089	232 231	-6	-91521	170	.09264	$2{ }_{2}^{20+}$
. 6	-01948	238	.98089 .98319	230	. 8	.91181	170	.09672	204
$\cdot 7$	-1471	239	. 98550	231	. 9	.91013	168 167	.09874	202
8	-01234	237 235	.98781	231 230	28 -	- 08446	168	$\cdot 10077$	201
9	-00999	235	.9901 1	230 230	$\cdot 1$	-90680	165	$\cdot 10278$	201
23.0	.00764	235	. 99241	230 228	- 2	-90515	162	$\cdot 10479$ $\cdot 10677$	198
$\cdot 1$	-00534	231	. $99+69$	228	$\cdot 3$	-90353	163	-10677	200
	.00303	228	. 99698	228	4	-90190	162	.10377	200
$\cdot 4$.00075 0.99846	229	-90926	228	. 5	. 89868	160	-11275	198
- 5	-99619	227	.00383	229	$28^{\circ} 36^{\prime} 6^{\prime \prime}$. 89865		-11279	

Chap. I.]
The Tides

Table XVIII. (7)-Values of $1 / f$ and f corresponding to various values of I, to be used in computing H and R for the Tide K_{2}.

Values of I	$1 / f$		f		Values of I	$1 / f$		f	
$18^{\circ} 18^{\prime} 30^{\prime \prime}$	1.33764		0.74759		$23^{\circ} \cdot 5$	1.01137		0.98876	
18.4	-33173	655	-75090		6	. 00566	571 570	. 99437	561
$\cdot 5$	-32518	647	$\cdot 75462$	372 370	$\cdot 7$	0.99996	575	1.00004	567 570
6	$\cdot 31871$	647	$\cdot 75832$	372 377	. 8	-99429	564	-00574	574
$\cdot 7$	-31218	654	$\cdot 76209$	377 382	$\cdot 9$	-08865	564	-01148	577
-8	-30564	654	$\cdot 76591$	382 383	240	-98304	556	-01725	578
$\cdot 9$	-29915	658	$\cdot \mathrm{P} 6974$	383 391	-1	-9774S	55	$\cdot 02303$	58
19.0	-29257	649	$\cdot 77365$	391	$\cdot 2$	- 97194	551	.02837	587
$\cdot 1$	-28608	659	- 77756	391 398	$\cdot 3$	-06643	54^{8}	-03474	590
- 2	-27953	652	.78154	400	- 4	-06005	547	-04064	505
$\cdot 3$	-27301	651	$\cdot 78554$	404	$\cdot 5$	-95548	$54{ }^{\circ}$.04659	595
$\cdot 4$	- 26650	657	$\cdot 78958$	411	6	-95003	539	.05254	601
$\cdot 5$	- 25993	648	$\cdot 79369$	411	-7	-94469	537	-05855	604
. 6	-25345	652	$\cdot 79780$	417	. 8	-93932	537	-06459	606
$\cdot 7$	-2493	651	-80197	421	. 9	-93401	531 530	-07065	612
. 8	-2+042	648	-80618	421 423	25 -	-92S71	532	$\cdot 07677$	610
$\cdot 9$	-23394	648	81041	432	$\cdot 1$. 92347	524	-08287	618
200	-22740	644	-81473	432	. 2	-91823	524	-08005	621
$\cdot 1$	-22096	648	-81003	437	$\cdot 3$	${ }^{-91303}$	515	.00526	621
$\cdot 2$	-21448	648	-82340	4372	$\stackrel{4}{5}$	-90788	515	-10147	628
$\cdot 3$	-20800	648	-82782	442	$\cdot 5$	-90273	515 508	-10775	628
$\cdot 4$	-20157	643	-83224	442	-6	-89765	508 508	-11403	633
- 5	-19510	638	$\cdot 83675$	449	7	. 89857	503	-12036	635
. 6	-18872	644	-84124	445	. 8	. 88754	500	-12671	63^{8}
7	$\cdot 18228$	644 638	-84582	$4{ }^{4} \mathrm{i}$	$\stackrel{.9}{9}$.88254	499	-13309	645
. 8	$\cdot 17590$	638	- 85042	4	26.0	${ }^{8} 87755$	492	-. 13954	642
-9	- 66052	639	$\cdot 85505$	470 470	$\cdot 1$	${ }^{87263}$	491	-14596	649
21.0	-16313	639 631	- 85975	$4{ }_{4}^{1 / 9}$	$\cdot 2$. 86772	488	-15245	651
$\cdot 1$	$\cdot 15682$	633	-S64t4	475	$\cdot 3$. 86284	$4_{4} 83$	-15806	653
$\cdot 2$	$\cdot{ }_{-} 5049$	631	- 86919	$4{ }^{\text {NOO }}$	$\stackrel{4}{5}$	- 55801	${ }_{4}{ }_{4} 8$	-16549	661
$\cdot 3$	$\cdot 14418$	628	-8739	4 4 2	5	- 55317	475	-17210	657
, 4	$\cdot 13790$	629	- 87881	4	6	-84842	476	.17867 .18531	664
-5	$\cdot 13161$	622	-S8370	488	$\cdot 7$	-84366	473	-18531	669
6	- 2539	622	-88838	496	. 8	-83393	468	-10200	668
$\cdot 7$	-11915	619	-89354		${ }^{-9}$	-83425	466	- 10868	674
. 8	-11296	618	-89SJI	407	27-0	- 82959	460	-20542	612
-9	$\cdot 10678$	618	- 00.152	50 S	$\cdot 1$	-82499	460	-21214	680
220	-1060	611	- 9086	506	- 2	- 22039	456	-21894	68I
$\cdot 1$	-00449	6ı1	-91360		$\cdot 3$	-81583	452	-22575	683
- 2	$\cdots{ }^{-2} 858$	608	${ }^{6} 91880$		$\cdot 4$	-81131	452	-23258	600
3	48230	606	. 92396	520	$\cdot 5$	-80679	445	-23948	688
$\cdot 4$	07624	605	$\cdot 92916$	526	$\cdot 6$	-80234	445	. 24636	694
$\cdot 5$	977019	595	'93442	526 524	$\cdot 7$	$\cdot 79789$	448	. 253330	693
6	-06491	5\%	-93966	524 532	$\cdot 8$	$\cdot 79351$	439	-26023	700
$\cdot 7$	-05923	597	-94493	532 535	$\begin{array}{r} \\ \hline 8 \\ \hline 8\end{array}$	$\cdot 78912$	435	-26723	702
-S	-05326	597	${ }^{\circ} 95033$	535	28 -	$\cdot 78477$	429	.27425 .28127	701
$\cdot 9$	04635	5502	-95570	537	$\cdot 1$	$\cdot 78048$	429	.28127	709
23-0	-04043	5596	-96114	5+4	- 2	$\cdot 77619$	426	. 288546	712
$\cdot 1$	-0,3457	5.34	'06653	$5+4$ $5+9$	$\cdot 3$	$\cdot 77193$	421	-29540	711
$\cdot 2$	02373	581	. 97207	549 552	$\stackrel{+}{4}$	$\cdot 76772$	421	$\cdot .30257$	717
$\cdot 3$.02292	578	-97759			.76351 $\cdot 75934$	417		719
. 4	01714 -01137	577	.98315	550 561	$28^{\circ}{ }^{-6} 6^{\prime} 6^{\prime \prime}$.75934 .75928		$\cdot 31093$.31703	

Char. I.]
Theory and Computation

Table XIX.-Values of v^{\prime} corresponding to I, to determine initial argument of Tide K_{1}.
$\operatorname{Tan} \nu^{\prime}=\frac{\operatorname{Sin} \nu}{\operatorname{Cos} \nu+0^{\circ} 46407 \times k_{1}}$ where $k_{1}=\frac{\operatorname{Sin} \omega \operatorname{Cos} \omega\left(1-\frac{3}{2} \operatorname{Sin}^{2} i\right)}{\operatorname{Sin} I \operatorname{Cos} I}$.

N. B. - In the above table v^{\prime} is positive when N is between o° and 180°, a nd negative when N is betwoen 180° and 360°; thul it is necessary to observe what is the value of N, because I is always positive.

Chap. 1.]
The Tides
Table XX.-Values of $2 v^{\prime \prime}$ corresponding to I, to determine initial argument of Tide K_{2}.
$\operatorname{Tan} 2 \nu^{\prime \prime}=\frac{\operatorname{Sin} 2 \nu}{\operatorname{Cos} 2 \nu+046407 \times k_{2}}$ where $k_{2}=\frac{\operatorname{Sin}^{2} \omega\left(1-\frac{2}{2} \operatorname{Sin}^{2} i\right)}{\operatorname{Sin}^{2} I}$.

Name of Port	Scale	$\underset{\text { Scale }}{\mathbf{M}}$ factor	$\begin{gathered} \mathrm{C}= \\ \frac{\mathrm{M}}{12 \cdot 7} \end{gathered}$	Log. of M	$\mathbf{A}_{0}=$ Difference in height between M.S.L. and datam of soundings	Time	$\begin{gathered} \text { Longitude } \\ \text { of } \\ \text { Port } \end{gathered}$	$\begin{aligned} & \text { Correction } \\ & \text { to } \\ & \text { L.M.T.T. } \\ & \text { to obtain } \\ & \text { Standard } \\ & \text { Time } \end{aligned}$	$\begin{gathered} \text { Correction } \\ \text { applied } \\ \text { to } \\ \mathbf{S}_{2} \end{gathered}$	Remarks.
Part I-(Hestern Ports.)					Feet					
1. Suez	$2^{\prime \prime}=1$ foot	$25 \cdot 40$	2	1.4048	3.73	Local Mean	$32^{\circ} \quad 33^{\prime}$ E.	Nil	Nil	
2. Perim	$2^{\prime \prime}=$	$25 \cdot 40$	2	1.4049	4.48		$43^{\circ} 25^{\prime} \mathrm{E}$.		"	
9. Aden	$2^{\prime \prime}=0$	$25 \cdot 40$		$1 \cdot 4048$	4.25	"	${ }^{44^{\circ}}{ }^{5} 59^{\prime} \mathrm{E}$.	"	"	
4. Maskat	$11^{\prime \prime}=\cdots$	$19 \cdot 0$	1.5	1.2799	4.77	"	$58^{\circ} 36^{\prime}$ E.	m"s	-	
5. Basrah. R.	$3^{\prime \prime}=$,	$38 \cdot 10$	3	1.5809	$7 \cdot 03$	Irāq Standard*	$47^{\circ} \quad 51^{\prime} \mathrm{E}$.	-11 24	+ $5^{\circ} \cdot 70$	- Irāq Standard
6. Bushire	$2^{\prime \prime}=$	25.40	2	1.4049	$2 \cdot 88$	Local Mean	$50^{\circ} \quad 45^{\prime}$ E.	Nil	Nil	meridian of $45^{\circ} 0^{\prime} \mathrm{E}$.
7. Karãchi	$\mathbf{1}^{\prime \prime}=$	12.70	1	1-1038	5-21	Indian Standard \dagger	$66^{\circ} \quad 58^{\prime}$ E.		$-31^{\circ} \cdot 07$	+ Indian Standard
8. Otha Pt. \& Bet Harbonr	$1^{\prime \prime}=$	12.70	1	1.1038	6.67	"	$69^{\circ} 05^{\prime} \mathrm{E}$.	+53 40	$-26^{\circ} \cdot 83$	Time or mean of the meridian of $82^{\circ} 30^{\prime} \mathrm{E}$.
9. Porbandar Bet Harborr	$1{ }^{1}{ }^{\prime \prime}=\overrightarrow{ }$	19.05	1.5	1.2799	$5 \cdot 92$	"	$69^{\circ} 37^{\prime} \mathrm{E}$.	+51 32	$-25^{\circ} \cdot 77$	
10. Port Albert Victor	$1^{\prime \prime}=\cdots$	$12 \cdot 70$	1	1-1038	$5 \cdot 78$	",	$71^{\circ} \quad 32^{\prime} \mathrm{E}$.	+43 52	-210.93	
11. Bhāvnagar	${ }^{\prime \prime}{ }^{\prime \prime}=$	$6 \cdot 35$	0.5	0.8028	$19 \cdot 74$	",	$72^{\circ}{ }^{09}{ }^{\prime} \mathrm{E}$.	+41 24	-20.70	
12. Bombay (Apollo Bandar)	$1^{\prime \prime}=\cdots$	12.70	1	1.1038	8.23	"	$72^{\circ}{ }^{\circ} 50^{\prime} \mathrm{E}$.	+38 40	$-19^{\circ} \cdot 33$	
13. Marmagao	$2^{\prime \prime}=\cdots$	25.40	2	1.4048	$3 \cdot 52$,	$7^{73^{\circ}}{ }^{\circ}{ }^{48^{\prime} \mathrm{E}}$ E.	+3448 +33	-170.40	
15. Kârwàr	$2^{\prime \prime}=$,	$25 \cdot 40$	2	$1 \cdot 4048$	$3 \cdot 70$	"		+33 36	$-16^{\circ} \cdot 80$	
15. Beypore ... \ldots	$3^{\prime \prime}=\cdots$	$38 \cdot 10$	3	1.5809	$2 \cdot 88$,	$7{ }^{7} 5^{\circ}$	+2848	$-13^{\circ} \cdot 40$	
16. Cochin ...	$4^{\prime \prime}=$	$510 \cdot 80$	4	1.7059	$1 \cdot 91$	"		+2500 +17	$\begin{array}{r}\text { - } 12.50 \\ -80.70 \\ \hline\end{array}$	
18. Muticorin \quad...	${ }^{\text {4 }}{ }^{\prime \prime}=$	$50 \cdot 80$ 38.10	$\stackrel{4}{3}$	$1 \cdot 7059$ 1.5809	$3 \cdot 17$	","	$73^{\circ} 03^{\prime} \mathrm{E}$.	+1724 +37	- $8^{\circ} \cdot 70$ $-18^{\circ} \cdot 90$	
19. Pämban Pass ...	$t^{\prime \prime}=$ ",	50.80	4	1.7059	$1 \cdot 33$	",	$79^{\circ} \quad 12^{\prime} \mathrm{E}$.	+13 12	- $6^{\circ} \cdot 60$	
Part II-(Eastern Ports.) 20. Colombo	$4^{\prime \prime}=1$ foot	$50 \cdot 80$	4	1.7059	$1 \cdot 24$		$78^{\circ} \quad 51^{\prime} \mathrm{E}$.	+10 36	- $5^{\circ} \cdot 30$	
21. Galle	$4^{\prime \prime}=1$	50.80	4	1.7059	$1 \cdot 11$	",	$80^{\circ} \quad 13^{\prime} \mathrm{E}$.	+ 908	- ${ }^{\circ} \cdot 57$	
22. Trincomalee ...	$4^{\prime \prime}=\cdots$	50.80	4	1.7059	$1 \cdot 03$	"	$81^{\circ}{ }^{\circ}{ }^{\circ} 3^{\prime} \mathrm{E}$.	+ 508	- 20.57	
23. Negapatam	$4^{\prime \prime}={ }^{\prime \prime}$	50.80	4	1.7059	$1 \cdot 11$	"	$79^{\circ}{ }^{51} 1^{\prime} \mathrm{E}$.	+10 36	- $5^{\circ} \cdot 30$	
24. Madras ...	${ }^{3 \prime \prime}$ = $=$	$38 \cdot 10$	3	1.5809	$1 \cdot 94$	"		+848 +800	- ${ }^{\circ} \cdot 3.40$	
25. Cocanāds	$2^{\prime \prime}=$	$25 \cdot 40$	2	1.4048	$2 \cdot 84$	"		$+100$	$-0^{\circ} .50$	
26. Vizagapatam ...	$2^{\prime \prime}=$	$25 \cdot 40$	2	1.4048	$2 \cdot 61$	"	$83^{\circ} \quad 17^{\prime} \mathrm{E}$.	- 308	$+1^{0.57}$	
27. Felse Foint	$1{ }^{\prime \prime}=$	$19 \cdot 0.5$	1.5	1.2799	$5 \cdot 06$	"	$86^{\circ} \quad 47^{\prime} \mathrm{E}$.	-17 08	+ $8^{\circ} \cdot 57$	
28. Dublat (Sāgar Island). B.	$4^{\prime \prime}=$,	50.80	4	$1 \cdot 7059$	$9 \cdot 56$	Calcutta Mean	$88^{\circ} 08^{\prime} \mathrm{E}$.	Nil	Nil	
29. Diamond Harbour. R.	$4^{\prime \prime}=$	50.80	4	1.7059	$8 \cdot 84$	",	$\begin{array}{ll} 88^{\circ} & 11^{\prime} \mathrm{E} . \\ 88^{\circ} & 0^{\prime} \mathrm{E} . \end{array}$	"	"	
30. Kidderpore. R.	$4^{\prime \prime}=$	$50 \cdot 80$	4	1.7059	$10 \cdot 69$	"	$88^{\circ} \quad 20^{\prime} \mathrm{E}$.	"	"	
31. Chittagong. R.	$4^{\prime \prime}=$	50.80	4	1.7058	6.87	Indian Standard	$91^{\circ} 50{ }^{\prime} \mathrm{E}$.	-37 20	$+18^{\circ} \cdot 67$	
32. Akyab	$11^{\prime \prime}=$	19.05	1.5	1.2799	$4 \cdot 16$	BurmaStandard \ddagger	$92^{\circ}{ }^{\circ} 54^{\prime} \mathrm{E}$.	+18 24	- $8^{\circ} \cdot 20$	\ddagger Burma Standard
93. Diamond Island	$1 \mathbf{1}^{\prime \prime}=$	19.05	1.5	1-2799	$4 \cdot 69$	",	$84^{\circ} \quad 17^{\prime} \mathrm{E}$.	+12 52	- $6^{\circ} .43$	Time or mean of the meridian of $97^{\circ} 30^{\prime} \mathrm{E}$.
94. Bessein R. §	$13^{\prime \prime}=$	19.05	1.5	$1 \cdot 2799$	$5 \cdot 30$		$94^{\circ}{ }^{\text {4 }}{ }^{\prime} \mathbf{E}$.	+10 52	- $5^{\circ} .43$	
95. Elephant Point. R.	$3^{\prime \prime \prime}=\cdots$	${ }^{38 \cdot 10}$	3	1.6809	12.01		$98^{\circ} \quad 18^{\prime} \mathrm{E}$.	+1048 +45	- $2^{2.40}$	
36. Rangoon. R. ...	$\stackrel{4}{4 \prime \prime}{ }_{4 \prime \prime}^{\prime \prime}=\cdots$	50.80 50.80	4	1.7059 1.7059	10.25 10.06	"	$9^{96}{ }^{\circ}{ }^{\circ} 0^{\prime} \mathrm{E}$ E.	+ 520	$-2^{\circ} \cdot 67$	
38. Moulmein. R. ${ }^{\text {a/. }}$	$4^{\prime \prime}$ 三 $=\cdots$	50.80 50.80	4	1.7059 1.7059	10.06 5.86	"		- 016	$+0^{\circ} .13$ $+0^{\circ} .23$	
39. Mergai ...	${ }^{\prime \prime}=$	$9 \cdot 525$	0.75	0.9788	$9 \cdot 16$	",		- 424	$+{ }^{2} .20$ $+{ }^{2} .20$	
40. Port Blair	$2^{\prime \prime}=\cdots$	25.40	2	1.4048	$3 \cdot 60$	"	$92^{\circ} \quad 46^{\prime} \mathrm{E}$.	+18 56	- $9^{\circ} \cdot 47$	

まutbey of 亚がaia

THE TIDES

CHAPTER II

Tidal Observations

1．In order to obtain data for harmonic analysis，it is necessary，in the first place，to determine the heights of water at any port above some fixed mark or datum for every instant of time，for a more or less extended period，in order to obtain values of tidal constants for the purposes of prediction of tides，by means of harmonic analysis．

Practically the determination of the tidal heights at any station enables zeros of level to be fixed for purposes of survey，and affords data for the calculation of the rise and fall of the tides at a future period． The tide tables prepared by means of these data subserve the purposes of navigation．

2．Tidal heights can be read direct on a graduated tide－pole
Tlide－poles． erected in the sea，but as the latter is continually being disturbed by waves，observations taken on a pole are not very accurate．

The measurements can be better obtained by means of a Self－ Registering Tide－Gauge of which there are several

> Self－Registering Tide－gauges． patterns．These exhibit the heights of the tides in a graphical form by means of a pencil，driven by the rising and falling water with the help of suitable mechanical contrivances，marking a sheet of paper rolled round a drum driven by clock－work．The period during which the gauges are allowed to work is five years for minor stations，as this is considered suffi－ cient to give a fair representation of the tidal oscillations at any place，and permanently at other stations，or at least as long as the general tidal operations last，and certainly not less than nineteen years， 18.6 years being the period of revolution of the moon＇s nodes， which results in creating a certain tide which is expected to give valu－ able information with regard to the rigidity of the earth．It is of the utmost importance that as few interruptions as possible may occur in the observations，and when they do occur that they may be of short dur－ ation ；otherwise the method of interpolation employed in filling up the breaks fails，and a more complicated and less satisfactory one has to be adopted．

Chap. II.]

The Tides
3. The choice of a site for the erection of a tide-gauge depends so much on local circumstances that a careful recon-

Selection of a site for a tide-gange. naissance of the fore-shore is a necessary preliminary to the selection of the best of the generally limited number of suitable positions.

The gauge should be placed so as to obtain a fair representation of the tidal oscillations of the surrounding area, and to secure this it is necessary, (1) that the sea should have direct communication with the gauge, and not approach it through tortuous channels, (2) that the spot chosen should be sheltered from heavy weather, and (3) that there should be at least 5 feet at low-water at the cylinder. For example, a good position would be the end of a pier or jetty, or the wall of a dock. It must ${ }_{2}$ however, be pointed out that a position in a cove or in a minor bay at the head of a large bay, though it may apparently answer the above requirements, is not a good one for a tidal observatory, as experience shows that, at stations where the range is small, (as in the south of India), the tidal curves, recorded at such a site, often present a zig-zag appearance all along the rise and fall.* The irregularities are certainly not caused by rough or lumpy water ; because it has frequently been noticed that they were being registered inside the float cylinder at times when the surface of the water outside was perfectly smooth, and no swell or ripple was apparent to the eye. There seems to be a slow throbbing or pulsatory action going on in such localities, during both rise and fall, which the eye does not readily detect; for instance, during a rising tide the recording pencil will remain stationary, sometimes for nearly five minutes, and then gradually fall for two or three minutes to an extent representing 2 or 3 inches in actual fall of tide, then again remain stationary for a few minutes, and afterwards move up on the rise. This will be repeated at intervals during the entire rising of the tide, and the same thing will recur in reversed order during the fall of the tide. In tidal rivers no such peculiarities have as yet been met with.

When a station has been selected near deep water, a vertical cylinder is fixed in the water in such a way as to admit it only through holes small enough to annul wave-motion and large enough to cause no sensible retardation of its rise and fall in the cylinder.
4. At several observatories communication between the cylinder and the sea was obtained by means of a connecting pipe, as explained in

[^14]

Chapter IV Part I, G. T. Survey Vol. XVI. This method is not to be recommended, as the pipe is liable to get blocked.

The tide-gauge which has recently been installed at Basrah by the Port Authorities, was made by Messrs Glenfield and Kennedy. It is worked on this principle of having a pipe connection with the river, which as stated above, is not a satisfactory one. Its diagrams are moreover on too small a scale for accurate readings.
5. The gauge in use at Prince's Dock, Bombay, is now only maintained by the Port Authorities for their own requirements. A full description of this pattern of instrument is given on page 16 Chapter III. Part l, G.T. Survey Vol. XVI. 'This gauge has not worked satisfactorily in the past having too frail working parts and too complicated mechanism. The float end band tends to twist and the paper gets torn by the recording pencil. There are no adjustments for the height of the latter, and the diagram is on too small a scale. Measurements cannot be taken while the instrument is working, and breaks in registration are not noticed till the diagram is removed.

Newman's pattern Tide-Gauge

6. The pattern of tide-gange used at the 7 working ports, viz: Aden, Karāchi, Apollo-Bandar (Bombay), Madras, Kidderpore, Rangoon and Moulmein, is known as Newman's pattern. Its distinguishing characteristic is that it is provided with a very long drum, whereby the curves are delineated on comparatively large scales alterable at will. It is superior to the other patterns and a description of it is given below.

General description.-To facilitate the detailed description, it will be best to begin with a general acconint of the instrument.

The motion due to the rise and fall of the water is directly communicated to a float partially immersed in it, and in order that the float may be freed as far as possible from wave action, it is surrounded by a cylinder into which the admission of the water is so regulated, that there is no sensible retardation between its rise and fall in the cylinder and outside. The float resting on the water inside the cylinder rises and falls with the tide, and to the float is attached a copper 'band' which passes over a wheel called the 'stud-wheel'.

The rise and fall of the 'float' communicates motion to the 'stud-wheel' by means of the 'band,' and the 'stud-wheel' in turn, by means of a projecting axle on which is fastened a 'toothed-wheel,' communicates motion to another 'toothed-wheel.' On the same axis
as the latter, and consequently moving with it, is another wheel round which a tlexible 'chain' is passed, one end of which is. attached to the wheel and the other to the 'pencil.' The 'chain' is kept taut by a 'counterpoise weight' to ensure the 'pencil' following the movements of the 'float.'

The 'pencil' moves longitudinally along a cylindrical 'drum' touching the surface with its point; the 'drum' revolves once in 24 hours by means of 'clock-work' at the opposite end to the float. The 'drum' is supported on a cast-iron 'bed-plate' and the whole instrument on wooden trestles.
7. The size of the cylinder varies at different places, but it

The Cylinder. is generally 24 inches in internal diameter, and is usually made of thin iron plate, in sections of from 4 to 8 or even 10 feet in length, with angle-iron flanges at each end for bolting the lengths together: the bottom of the cylinder should be closed with an iron plate, while the top reaches to the floor of the observatory, or preferably a little above it, so as to be clear of the dust when the floor is swept.

The bottom of the cylinder should rest on a concrete block, to which it should be securely bolted, where water is likely to be rough. In rivers, or sheltered positions it may be suspended from stout beams fixed in the observatory Hoor. In both cases it should be well braced down to low-water level to the adjacent piles, with iron rods.

If the cylinder rests on the ground, the best inlet for the water is through a number of holes $\frac{1}{4}$ to $\frac{1}{2}$ an inch in cliameter, near the bottom of the cylinder below the lowest level of spring-tides, but at the same time well clear of the ground on which the cylinder rests.

If it does not rest on the ground, the bottom of the cylinder is the best place for the holes.
8. The float is a cylindrical hollow copper vessel I foot in

The float band and stud-wheel. diameter and 9 inches deep and is of such density that it will just sink, if unsupported. The band is a copper ribbon, about 1 inch wide, perforated with holes about $2 \frac{1}{2}$ inches apart.

It is attached by means of thumb sorews and a plate to the head of an upright rod, (or piliar), which carries 3 small rollers so arranged that they bear on their upper surface a disc attached
by three uprights to a plate soldered to the float. The rod passes through the disc, its lower end being pivoted into the plate, so that the arrangement forms a kind of swivel and prevents the band being twisted, which is most important.

The stud-wheel is of brass, about $9 \frac{1}{2}$ inches in diameter, with a rim an inch wide: it has studs of the same diameter as the holes in the band, placed in the rim at intervals also of about $2 \frac{1}{2}$ inches, so that when the band is passed round the wheel the studs exactly fit into the holes, thus ensuring the revolution of the wheel as the float rises and falls.

The band is cut to such a length that it passes over the studwheel and about 6 feet beyond, when the float is in its lowest position in the cylinder. To the end of the band, as a counterpoise to the float, a weight is attached, and from its bottom a copper chain is suspeuded, which theoretically should be equal in weight, length for length, to the copper band. The other end of the chain is attached to a hook below the float, so as to form with the band a sort of endless clain passing over the stud-wheel and reaching to the bottom of the cylinder. This contrivance is introduced in order that the pull on the float shall be constant, otherwise a systematic error is introduced between rising and falling water. The counterpoise weight should be such as to give a decided preponderance, of say 3 or 小 ths, on the float side; but when once adjusted it should not be altered, without noting the fact in the inspection book. When the whole system of float, band and counterpoise weight is hanging in position in the cylinder, there should be 3 or 4 inches space between the float and cylinder on the one side, and the counterpoise weight and cylinder on the other.
9. The bed-plate is of cast-iron about 7 feet long, 1 foot

The bed-plate. broad and $\frac{3}{4}$ of an inch thick, the upper surface being carefully planed. Underneath this plate and cast in the same piece with it, is a web or frame work, 4 inches high, which extends to within an inch of the edge of the upper plate both at the sides and at the ends, and has diagonals or stiffeners.
10. The web rests on a wooden trestle the top of which is 5 feet Trestic. long, 1 foot broad and 2 inches thick : the legs are splayed and firmly braced. The trestle is placed longitudinally in the observatory and touching the top of the cylinder at oue end, being thus in such a position as to bring the stud-wheel almost over the centre of the cylinder.

The axle of the stud-wheel is supported on two uprights fixed to the bed-plate. The axle is about 8 inches long and carries at its other end a toothed-wheel which is in gearing with another toothed-wheel. The latter is fixed on an axle supported by two arms fastened to one of the uprights which support the drum.
11. The toothed-wheels are constructed in couples so as to The toothed-wheels. enable the working scale on the tidal diagram to be varied at pleasure, from the natural or full scale to that of $\frac{1}{8}$ th, according to the range of the tide. Six couples are supplied with each gauge, giving scales of $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$ and $\frac{1}{8}$; and as the drum is 5 feet long, any tide whose range does not exceed 30 feet can be safely resistered. At Bhāvnagar where the range is over 36 feet a $\frac{1}{10}$ scale was employed. In practice the couple is selected which enables the tidal curves to be exhibited on the largest scale possible.
12. The axle which carries the toothed-wheel also carries a chain
'Ibe cliain wheel. wheel, round which the chain regulating the motion of the pencil-holder winds, so that the motion of the water is communicated to the pencil. This wheel is about 5 inches in diameter and its rim is spirally grooved to receive the chain which winds around it without overlapping.
13. At about 10 inches from each end of the bed-plate there are brass uprights and on each of these a pair of frictionrollers is fixed, the pins on which the rollers turn being screwed into the uprights some 5 inches above the bed-plate.
14. 'The drum which is 5 feet 3 inches long and exactly 24 inches

The drinm. in circumference revolves between the uprights: it is composed of sheet-brass and is made as nearly as possible a true circular cylinder. Axles project from each end and rest on the friction-rollers: one axle is elongated and, passing through an oblique slot in the upright, carries a toothed-wheel which gears with the driving clock. The position of the drum is horizontal and it carries the paper on which the tidal curve is registered.

Two grooves about $\frac{1}{T^{6}}$ of an inch deep are cut round the drum near each end and exactly 5 feet apart and a third is cut midway between the two first. The groove at the clock end is generally adopted as the zero-line of the gauge. When the paper is fixed on the drum, the zero, middle and end lines can be indicated on it by rubbing over the grooves with a hard pencil. The paper is nearly 5 feet 3 inches long and extends well beyond the extreme grooves.

Chap. II.]
Tidal Observations

The paper is wrapped around the drum and held in position by clips, the edges of the paper being pasted together along the length of the drum.
15. Parallel to the drum and fixed above it to the brass uprights are two bars of solid brass drawn to angle shape

Arrangements for the pencil. and between them moves a slide carrying the pencilholder, in such a position that the pencil is exactly over the axis of the drum. The pencil-holder slide, which is a double T -shape, moves along the bars and is pushed towards one of them by means of a spring, so that it has no lateral motion. The upper flanges of the parallel bars are gripped between the springs and the upper plate of the slide for extra smoothness of motion.

The bars are prevented from buckling or having lateral motion by two arched stiffeners which are screwed on to the outer sides of the bars and allow the pencil-holder slide to pass through them.
16. To each end of the upper plate of the pencil-slide, hooks are fixed : to the one nearest the float, a flexible

The chain and counterpoise weight. chain, (see para 6), is fastened and carried from thence round the chain-wheel, to which the end of it is made fast. The loop itself forms a swivel on a cylindrical capstanheaded screw which works into the upper plate of the slide and by means of which the pencil can be set exactly to the zero of the gauge for height.

To the other loop a silver wire or a piece of whip-cord is tied which passes over a rimmed pulley at the top of the driving clock and has a weight of about 5 ths attached to its other end. As the pencil-slide moves between the bars, the weight rises and falls and a sufficient space must be allowed for its drop.
17. The pencil-holder is a small tube which scrers into the

The pencil-holder. slide and is adjusted so that it almost touches the paper on the drum. It is made to contain common leads which are pressed down on the paper from above by a weight of two or three ounces, placed in a cup provided for the purpose.
18. The driving clocks in use are of two kinds. The 'regulator

The clock. clock' with English lever escapement, (gold hairspring), and a similar clock with a pendulum. The latter does not work well in positions where the gauge is liable to slight vibrations, in such cases the 'regulator clocks' should be employed.

The movements are boxed in by movable brass slides and the oil-cups are protected by bushes. The drum is driven by a toothed-wheel of the clock gearing with another on the axle of the drum. The arrangement for connecting and disconnecting the drum and the clock is as follows:-A clamping screw with a milled head is connected with an interior arbor or spindle, so that when the screw is clamped the driving toothed-wheel of the clock is not movable on the arbor, but when the screw is released the wheel can turn freely, and thus permit the drum to be placed in any position required. The drum can thus be set so that the pencil shows the correct time on the diagram and the clamping of the screw then brings the two toothed-wheels into connection with the rest of the wheel work of the clock.
19. In order to prevent any back-lash which may exist between

The back-lash weight. the gearing of the clock and the drum, a cord carrying a weight of about 5 tbs , is attached to and encircles a barrel on the axle of the drum and passes over a pulley on the bed-plate. This barrel carries a pawl which drops into a ratchet-wheel on the drum: it also carries a crown-wheel which gears with a bevel-pinion. This pinion turns freely in a socket fastened to the upright which supports the clock end of the drum. The outer end of the pinion is square so that the key which winds the clock fits it. In winding the pinion the barrel is also turned, thus winding up the weight which prevents the backlash, while any backward motion is stopped by the pawl and ratchet on the drum.
20. As the drum for the diagram may not be quite circular, the position of the pencil, as the clock shows the

Ellipticity of the dram. exact hour at four different times of the day, is marked on the diagram which is afterwards redivided in accordance with these marks.
21. No system of tidal observations can be considered complete which does not contain a continuous record of the

The auxiliary ins. trnments. atmospheric conditions at the station. Consequently at every tidal station, when observations were in progress, (with the exception of Bombay where the information was supplied from Colaba), the following auxilary instruments were maintained:-a self-registering aneroid barometer to measure the momentary variations of pressure, and a standard mercurial barometer to check the aneroid from time to time and enable its index
error to be determined; also a self-registering anemometer indicating the velocity and direction of the wind at every moment, a maximum and a minimum thermometer and a rain-gauge.

These auxiliary instruments have since been removed from all the observatories. A description of the instruments, however, is given below for the information and assistance of officers inspecting at any new station at which it may be desirable to take observations in future.
22. Two classes of self-registering aneroids are generally used viz:-those made by Légé and Co., and by Richard

> Self-registering aneroid. Frères, of Paris. All new instruments are of the latter type, which is much the simplest. A description of both is given below.

In Légé's self-registering aneroid barometer there are seven vacuum-chambers or boxes coupled together ; the top one is attached to a screw used for setting the metallic registering pointer and to the lowest is fixed a forls with hardened steel knife-bearings. On these bearings rests, by means of knife-edges, a lever which connects the balancing-spring with the vacuum-boxes, being pivoted on other knife-edges midway between the attaching points. The vacuumboxes and balancing-spring are placed on a brass frame.

The balancing-spring is a spiral one hooked at the bottom to the lower edge of the lever and at the top to a screw working in the upper part of the frame, by which its pull in connection with the lever is so adjusted that the reading of the instrument corresponds to that of the mercurial barometer under the particular atmospheric conditions existing at the time of its first adjustment. This adjustment, made by the maker, ought not to be altered unless the instrument has to be taken to pieces.

The amount of motion produced by the variation of the atmospheric pressure on the boxes is multiplied by the lever above-mentioned and then again by a second lever which is supported on two uprights and counterpoised. These two levers are connected together by a steel rod pointed at both ends and pivoted in conical holes out of which it is prevented from slipping by means of forks.

Projecting from the clock is a third lever of the same length as the second and attached to it by a joint whose length is half the height of the recording barrel. The joint is movable, and at its centre a motallic pointer is fixed for the purpose of marking on the prepared paper on the barrel; the pointer can be adjusted to press

Onis. II.]

The 'Indes

more or less heavily as required. The mode of marking is as follows :-Attached to the back of the third lever there is a slidingpiece which is pulled by the clock movement three times per hour and by this motion the joint" is twisted and the pointer pressed against the paper.

To the brass frame, on which the vacuum-boxes and balancingspring are placed, there is fixed a steel tube and on this the revolving drum pivots, being maintained in position by a nut screwing in the top of the tube. The tube is hollow to admit of a turnscrew being inserted to set the recording pointer to agree with the mercurial barometer. At the bottom of the revolving drum there is a toothed crown-wheel which gears with a pinion driven by the clock. The drum revolves in $8 \frac{1}{2}$ days. The recording barrel, on which the specially prepared paper is fixed, rests by its own weight on the revolving drum and has a knob on the top with a hole through it of the same size as the hollow in the steel tube. The several parts are fitted on a substantial brass plate, about 21 inches long and 6 inches wide, screwed on to a board an inch thick and the whole instrument is fixed in a neat onse with a glass front, the top and front being made to open on hinges.

The Richard instrument is of much simpler construction, and much less liable to get out of order. The recording pen is placed at the extremity of a long aluminium style, which is connected with the vacuum-box by means of a system of multiplying levers. The pen records the pressure on a brass drum, round which the diagram paper is wound, for which purpose a special ink is used. The drum is revolved by clock-work once in 8 days. The following instructions are supplied by Richard Frères with the instrument:-
(a) Open the case of the instrument.
(b) Fit the pen on the style: bring it away from the cylinder by means of the pivoted pin and turn the cylinder to the left so that the spring binder fixing the paper on the drum is on the left side of the pen.
(c) Take off the spring binder.
(d) Place the key in the opening which is closed by the milled edge brass button and wind up by turning the key to the left, (the other opening, closed by a sliding plate is only used for regulating the escapement and must not be left open). The cylinder should be main-
tained firmly with one hand while winding up with the other.
(e) Place the paper round the drum, the right end under the left one and in such a way that the latter be in a line with the two slots in which the spring binder fits, so that, when this one is fixed on again, the two ends of the paper are pressed equally and without passing the binder. Care must be taken to lay the paper perfectly flat and to let its lower edge rest on the projection at the bottom of the cylinder.
(f) Put the ink in the pen without filling it up. No ink must be allowed to remain on the style, especially if it is made of aluminium, as it would become corroded. If the ink overflows, the pen must be taken off, dipped in water and allowed to dry; the style must also be washed and dried, a drop of oil placed on the thin end of the style and the pen re-fitted.
(g) Turn the cylinder round its axis so as to make the time correspond with a clock, and if there is a standard instrument, make sure that the indication of the self-recording one is exact; if there is any difference, turn to the right or left, as may be required, the square nut which is placed underneath the case.
(h) Push back the pivoted pin which kept the pen away from the paper and give the pen a slight up and down motion to make sure that it writes.
In order to trace a regular diagram, the pressure of the pen on the paper must be very slight; to ensure this, the instrument must be tilted forward to an angle of about 30° to 45°. When in that position, the pen ought to lose contact with the cylinder, if it does not, the pressure is regulated by means of the milled edge knob placed at the broadest part of the style, the elasticity of which is sufficient to give the necessary pressure.
(i) Close the case of the instrument.

Cleaning the Pen.-When the pen is dirty, let it remain for some time in clean water and wipe it with a piece of thin linen or a fine brush. This is needed only once in every three or four months. Generally, if the pen coases writing, it is sufficient to take it off and slip a piece of chin paper between its two blades.

Ordinary ink must never be used, as the admixture of a single drop with the special ink would decompose the latter.

Important Notice.-The pen-bearing style must always be in front of the pivoted pin which serves to keep it away from the cylinder. If, on receiving the instrument, it is found that during the transit the style has got between the pin and the cylinder it must be lifted up and placed again in front of the pin.
23. The self-registering anemometer is fitted with Robinson's cups and steering-vanes and is about half the

The self-registering anemometer. size of Beckley's standard anemometer. A special long protecting tube is fixed on the cross-bars carrying the cups to prevent dust or rain blowing into the bearings. The steering-vanes are made as large as possible with a sharper angle than usual, and the screw working the wheel of the indicating shaft has a quicker thread, so as to make the motion of the vane still more rapid.

The recording instrument has larger crown-wheels than usual, so as to produce an easier gearing. The driving-barrel of the clock movement is drilled through its centre and a shaft passed through the hole having at one end a pinion gearing with the reading barrel, and, at the other, in front of the clock, a milled-headed screw. This arrangement allows the registering drum to be easily set, for by loosening the screw the shaft becomes free and after the drum is set to correct time, the clock connection is made by clamping the screw.

To prevent the back-lash of the recording barrel, the pinion on the centre spindle of the driving-barrel of the clock in gearing with the recording barrel is double; one part of this pinion is fixed on to the spindle and the other is loose but attached to the fixed part by means of a circular wire spring, and, this being pressed back when gearing, the double pinion causes the tooth of the recording drum, which is in gear, to be clamped on both sides and thus prevents lost motion.

The clock has a good lever escapement with gold hair-spring and is driven by a weight; a dial showing minutes is fitted on to it.

The recording is done by the usual spiral metallic pencil marking on specially prepared paper. Spare parts are occasionally required, especially for the worm gearing in the small box just below the cups.
chap. II.]
Tidal Observations

Sometimes it is necessary to place the anemometer at a distance from the tidal observatory in order to obtain a site freely exposed to the wind from every direction.
24. A tidal observatory is constructed of wood and is usually

> The obsorvatory. so made as to be readily taken to pieces and put together again in order to be removed and reerected.

It is about 12 feet by 9 feet in plan and 12 feet high in the middle up to the ridge, from which the roof slopes down to the sides which are 8 feet high.

The internal fittings consist of a cupboard placed on the wall for keeping records and supporting the self-registering aneroid; a shelf near the top of the observatory for the recording gear of the selfregistering anemometer and a table on which to spread out the tidal diagrams.
25. Outside the observatory and attached to a pile of the pier or
'l'he graduated staff. to the wharf wall, a graduated staff is fixed vertically, in such a position as to be easily read, so that a comparison of the level of the water outside and inside the cylinder may be readily made by simultaneous readings of the pencil on the diagram and of the water on the graduated staff.
26. Two or three bench-marks are laid down in the vicinity of

Bench-marks every tidal observatory and connected with the bed-plate by first-class levelling vide Levelling. chapter. They are either cut in the dock-wall, or on the steps of some neighbouring building, or are cubical blocks of masonry, about $3 \frac{1}{2}$ feet each way, containing a large stone imbedded on the upper face. The stone is inscribed to show that it is a bench-mark of the Great Trigonometrical Survey, and the year on which it was laid down is also given. In the centre of this stone, a square depression of 5 -inch side and 4 inch deep is cut and nicely smoothed, its size being just sufficient to allow the levelling-staff to turn freely in it.
27. The trestle is first put in position, longitudinally in

To set up and start the self-registering tide gange. the observatory. The tide-gauge is next set up on the trestle touching the float cylinder at one end in such a position that the centre of the float, the band and counterpoise weight shall all be in a diametral plane of the float-cylinder, and also so that the float and counterpoise weight shall each be about 3 or t inches from the sides of the cylinder.

The trestle is then wedged up so that its top is nearly level, and its legs are firmly screwed to the floor. After this the bed-plate is levelled, longitudinally and transversely, by driving wedges in between the web and the top of the trestle. The extreme range of the tide having been found roughly, either by observation on the staff or from local information, the various parts of the instrument are tested, to see that they work freely and that there is enough drop, at extreme tides, for the counterpoise weight attached to the pencil traveller.

The working zero of the gauge should be at least 18 inches below the lowest low-water on record.

The wheels to govern the scale of the diagram are now placed in gear with the float-wheel, a trial ciagram put on, and the instrument approximately adjusted so that at half-tide the pencil will be at the centre of the drum. Sometimes the zero of the gauge is made to correspond with some particular level which has been taken as the datum for local surveys and the instrument is adjusted accord-ingly,:-e.g. when soundings are being taken in the vicinity and the times noted, the gauge readings at those times may be made to indicate the amounts to be subtracted from the soundings to find the distances of the bed of the sea below the datum.

Whatever be the approximate adjustments, careful measurements must next be taken to determine the distance of the water below the surface of the bed-plate when the pencil is on the zero of the gauge. In making these measurements, called 'zero measurements,' a special apparatus is employed.
28. A flat strip of brass with a right-angled band is fixed by

Zero measurements.

 two or three counter-sunk screws to the top of an ebony scale, divided into tenths, hundredths and five thousandths of a foot, so that when the flat piece of brass lies on the top of the bed-plate, the scale hangs vertically down; care is taken to have the under surface of the flat piece, which rests on the top of the bed-plate, corresponding exactly to the zero mark of the ebony scale.A small circular wooden disc, 3 inches in diameter and $\frac{1}{2}$ an inch thick, bevelled at.its edge from the bottom towards the top, is attached by means of a brass slip fixed on the top of the disc, to the end of a Chesterman's steel tape. The slip is made of two brass plates, about $2 \frac{1}{2}$ inches long and 1 inch broad, one fixed vertically nearly at the centre of the disc, and the other atta-

Ohap. II.]
L'IDAL OBSERVATIONS
ched to the first by four screws at its corners, so as to be removed at pleasure. The tape is held between the plates, and, when the screws are clamped, the dise is suspended by the tape. The dise is slightly loaded with lead, so that, when hanging from the tape, its under surface is quite horizontal. The distance from the bottom surface of the dise to the top of the clip, is exactly 3 inches; the 3 -inch mark on the tape should, therefore, be made to correspond exactly with the top of the clip, so that the bottom surface of the dise may correspond to zero on the tape. Steel tapes should be used when possible, but, if for any reason only an ordinary metallic tape is available, it should be tested by applying it to a standard levelling staff, the disc arrangement being held suspended all the time, so as to have the tape in tension under the same condition as it would be when in use.

The measurements are taken as follows:-The ebony scale is suspended from the bed-plate above the float-cylinder, apd the dise is lowered into the cylinder, care being taken to keep the tape close to the side of the scale; this is done by running off more tape than is required, passing it across the bed-plate and holding the tape on the top, so that it can be paid out easily and in very minute increments of length. When the disc is seen to be close to the surface of the water, warning is given to the clerk who is standing by, ready to mark the exact position of the pencil on the barrel. The lowering is continued very carefully, and actual contact with the water is noticed by the disc causing a tremor on the surface; at the moment of contact a signal is made to the clerk who marks on the diagram the position of the centre of the lead pencil, and the distance in feet is read off the tape, while the tenths, hundredths and thousandths are read off the scale. This distance is entered in the inspection book in one column: the measurement of the position of the pencil above the zero-cut on the drum is then carefully made, by using another scale, and entered in the next column. The latter entry is multiplied by the denominator of the fraction indicating the working scale of the gange and entered in a third column. The sum of the entries in the first and third columns gives a value of the distance of the water from the bed-plate with the pencil on the zeroline, or, in other words, the distance of the zero of the gauge from the bed-plate.

As a rule, twenty such measurements are made and the mean taken. The measurements have to le taken both during a rising

Chap. II.]
and a falling tide, (when it is well on the rise or fall), and the mean of the two sets is the adopted value of the zero below bedplate: this eliminates the influence of the lost motion or back-lash between the two toothed-wheels connecting the stud-wheel and chainwheel and also the error arising from looseness of the pencil in the pencil-holder. If the value of the distance of the zero below bed-plate agrees with the true zero, previously fixed upon in regard to the datum, there is nothing more to be done; but if not, the chain must be lengthened or shortened by means of the milled-headed screw until the agreement is complete; reference lines are then painted on the band at the level of the top of the bed-plate, when the pencil is at each of 3 grooves in the drum, and the gauge may then be started.

The float-end of the bed-plate should now be connected by careful spirit levelling with the bench-marks and with the graduated staff, and, if necessary, the graduations of the latter altered so that its zero may correspond with that of the gauge.

It merely remains to set up and start the meteorological instruments and the tidal observatory is in complete working order.
29. For each observatory there is a clerk provided, who is

Duties of the clerk in charge. generally one of the writers in the Port Office and receives a small increase of pay for the observatory duties; but in some cases special men had to be engaged as in the case of Port Blair.* Printed instructions are given to the clerk in charge concerning his work which should be carried out as follows :-
30. The observatory should be visited each day at 7 and 10 A. m. and at 4 and 6 p. m. except on Sundays

Hours of visiting the observatory. when two visits are considered sufficient; and also twice a month at some other hour to change the

diagram.

31. The tide-gange clock must be wound up twice a week and

The tide-gange

 the back-lash weight every evening. The positions of the pencil on the barrel should be marked by a circle of ink round the pencil, on each visit to the observatory, at the exact hour, and the date of the month written alongside, so that, should the drum not be truly circular, the diagram can be re-divided by means of these hour marks. The preceding day's curve should also be inked in with one of the coloured inks supplied. Simultaneous readings of the position of the pencil on the[^15]diagram and of certain white lines marked on the float-band should be taken once daily and the values to 2 places of decimals entered in the report, so as to make sure that the band has not been displaced. The heights of the tidal curve for each hour of the preceding 24 hours must be carefully measured off the diagram to 2 places of decimals and entered in the report.
32. The clock of the tide-gauge must be compared daily with the

Tide-gauge clock gun or time-ball, or with a watch previously taken to the telegraph office, where standard time can be correctly obtained at 4, p. m. If the clock is in error by over a minute, the error of the clock should be noted in the report with a remark as to whether it has been corrected or allowed to stand.

The reading of the pencil on the diagram and the height of the water at the same moment on the graduated staff (if there is one) should be taken once a day and entered in the report. If there is an unmistakable difference of two-tenths of a foot when the water is calm, the cylinder should be flushed out and the communication holes examined. The diagram must have the zero, mid and end lines marked by rubbing a hard pencil over the grooves cut in the drum at these points. A line about half an inch long should be rubbed at the hours of $10 \mathrm{~A} . \mathrm{m} ., 2 \mathrm{p} . \mathrm{m}$. and midnight in a part of the paper not marked by any curve, if possible. The marking should be done on the day after the diagram is put on and again on the day it is taken off, and the date entered against each set of marks.
33. The diagram must be changed once a fortnight, when the

Changing diagram. tide has well turned so as to make sure of getting the highest and lowest tides. The change is made as follows:-The new diagram is numbered, dated, and has a narrow slip one inch long cut out in readiness for setting the zero-line: it is damped all over with clean water and paste applied to the overlap. The hour and date that the work was stopped is noted in ink on the old diagram and the pencil-holder is taken off. The diagram on the drum is next cut carefully along the 12 o'clock line, the back-lash weight removed, the clips unscrewed and the diagram taken off, carefully rolled up and put aside. The drum and the clock are then disconnected and the new diagram put on the drum by first making the 12 o'clock line of the paper agree with that marked on the drum and the zero of the diagram with that of the drum ; this can be done by means of the small slits that
have been cut out of the diagram. The clips are now screwed down and the drum turned round by hand till the outer edge of the diagram comes in contact with the 12 o'clock line and the height lines meet. The pencil-holder must then be fixed and the clock and drum clamped, care being taken that the pencil is over that part of the diagram which corresponds, as nearly as possible in time, with the time of the clock. The back-lash weight is carefully and slowly put on and the hour of commencing work noted on the diagram. It only remains to regulate the position exactly for time. This is done by selecting any convenient hour, say noon, and at one minute before, unclamping the clock-drum connecting-screw and, when the second hand shows the complete hour exactly, bringing the centre of the pencil exactly over the hour-line of the diagram and clamping very firmly, otherwise the clock may fail to drive the drum.
34. Any remarks regarding the stoppage of the clock, or in
stoppage of clock. fact anything unusual, must be noted on the diagram and in the daily report. If the clock should stop, the weight must be removed from the pencil-cup and the pencil slightly raised; the clock-drum connecting-screw must then be unclamped, the drum being held so that the back-lash weight does not run down, revolved by hand so as to bring the pencil over that part of the diagram which corresponds as nearly as possible to about 5 minutes in advance of the correct time, and the pencil weight replaced: the clock must then be started and stopped again, when it shows the first exact hour after starting, the pencil should be brought exactly over the hour-line, the clock and the drum firmly clamped and the clock re-started when the exact hour is shown by the watch.
35. If by any chance the band should come off the stud-

Diophncement of band. wheel, it should be replaced carefully by turning the wheel until the pencil is on the zero-line of the diagram and fitting the whole of the band marked with paint on the stud similarly marked; as the marks are made when the zero-line marked on the float-band is brought to agree precisely with the bed-plate, on the wheel being released, the pencil will assume its proper position.
36. Should the chain between the pencil-traveller and the float

[^16] end break, the pencil-holder must be removed from the traveller, the counterpoise weight detached and the two pieces of the chain taken out and
re-rivetted. The ends must then be attached to the wheel as before, and the stud-wheel turned by hand till the 2.5 line painted on the band is on a level with the bed-plate. If the deviation of the pencil from the $2 \cdot 5$ line on the barrel is small, it can be set right by the adjusting serew attached to the pencil-holder; but if the deviation is more than the screw admits of, one of the change-wheels will have to be taken off, turned one or two cogs and refixed, the final adjustment being made by the screw attached to the holder.

During the whole of the operations great care must be taken that the band does not kink.

In the case of a pipe connected tide-gauge, the stop-cock must be opened every day at high-water or near as is convenient, but not if the level of the water is nearly the same as the height of the stop-cock.
37. The aneroid and mercurial barometers and the thermometers attached thereto should be read daily at 7 and $10 \mathrm{~A} . \mathrm{m}$. , and at t and 6 р.м.
In the case of Légé's aneroid should the clock stop, the hand must be gently turned round till it points to the proper time as shown by the tide-gauge clock. The barrel of the diagram must then be turned until the pencil points to the proper time, but in doing this great care must be taken, otherwise the gold thread in Adie's paitern or the marker in Légé's may be broken. In the former, it should not be attempted if the clock hands are between 5 minutes to an hour and 10 minutes past the hour as the pencil marker suspended to the gold thread is at these times, either pressing or close to the barrel; and in the latter, it may be best done at 5 minutes past a full hour.

Richard's aneroid has no clock face. The point of the pen must be made to correspond on the diagram as nearly as possible with the time indicated by the tide-gauge clock.

The aneroid clock must be wound up every Monday morning and may be regulated by stopping for a few minutes if fast or pushing the minute hand forward if slow; but for one or two minutes' error it need not be altered.

The aneroid diagrams should be carefully numbered and changed every Monday morning, and the sheets should be carefully inked as they are taken off and put away.
38. The anemometer clock must be wound up every morning

Anemometer. plate.

The anemometer diagram must be changed daily at 7 a.m. and the diagrams dated and numbered, the hour being recorded as put on at such a time, and taken off at such a time. The number of miles of wind for the last 24 hours must be entered in the report, and is obtained by counting the number of velocity lines and multiplying by 10 . The diagrams must be carefully inked in daily.

The instruments should be all oiled occasionally; and in the case of the anemometer, if the direction of the wind has been steadily from one point for many days without altering, as in the S. W. monsoon, the fans of the direction gear should be turned with the hand until the vane has made one or two complete revolutions.
39. The daily reports must be made up in duplicate and one

Reports. copy sent by post to the head office. Anything unusual must be marked on the diagram and noted on the back of the report, and if anything emergent is required to be done, the port officer must telegraph to the officer in charge of the tidal party.
40. As a rule an inspection is made once a year, but some-

Jnspection of a tidal observatory Generul remurks. times oftener. Of course if any interruption has taken place, such as the removal of instruments by the port officer for safety on account of a cyclone, as has occurred more than once, or for the settlement of the observatory, thus necessitating a temporary suspension of the observations pending repairs, then an inspection should be made as soon as possible after the information has been received.

The substructure of the observatory should be carefully inspected at every visit, especially when the cabin stands on piles. The verticality of the float cylinder should be tested. If the cylinder, from any cause, is no longer vertical, the float, at low-water, may come in contact with the side of the cylinder and the friction thus caused will give a false record on the diagram.

When it is intended to make an inspection, the first thing to be done is to test the accuracy of the one-foot graduations of the Chesterman's tape with which measurements for determination of working zero will be made, especially when a metallic tape is used.

The inspecting officer ought to carry in his inspection box, a copy of this hand-book and of the current tide-tables for Indian ports, and the necessary scales, measuring tape, and other instruments required at an inspection.

The inspecting officer, accompanied by a mechanic, to dismantle, clean, repair if necessary, and refit the instruments, attends to the following points when making an inspection; and at the time of inspection writes in the observatory inspection book, under appropriate heads, a report, a copy of which is forwarded to the head office. The usual heads of the report are :-

General remarks.
Bench-marks.
Details of levelling.
Self-registering tide-gauge.
Details of determination of working zero.
Auxiliary instruments.
The general remarks should contain an account of the working of all the instruments since the last inspection, and should draw attention to the manner in which the observatory clerk performs his duties, and to anything else requiring special notice.
41. On arrival at the tidal observatory, it is necessary in the first place to ascertain if any settlement of the

Connection of bedplate, bench-marks and staff. tide-gange has taken place, by connecting the float end of its bed-plate by spirit-levelling of precision with the bench-mark of reference, which in its turn should be similarly comected with the other bench-marks, and with the graduated staff, in order to test the accuracy of the zero of the latter. The report should give both the results and the details of the levelling, and should mention the condition in which each bench-mark and the staff is found; it should also mention whether the bed-plate is level both longitudinally and transversely.
42. Before cleaning the gange, a set of measurements for the determination of working zero at a rising tide and

Zero mensurements and pencil and clock comparisone another at a falling tide, each set to consist generally of not less than 20 measurements, should be taken; their mean will give a value of the distance of the working zero below the bed-plate. This eliminates the influence of the lost motion, or back-lash, between the toothed-wheels connecting the stud-wheel with the sheave for the wire of the pencil-slide; it also cancels the error arising from looseness of the pencil in the

Crap. II.]
The Tides

- pencil-holder. If it should be necessary to continue these measurements, another pair of sets should be taken before proceeding with the inspection. These measurements for determination of the working zero should be made when the tide is well on the rise and fall, and not when it is almost high or low-water. The method of taking them has been previously explained in para. 28 and, in entering them in the inspection report, it should be stated that they were made before cleaning the gauge.

Concurrently with the measurements for the determination of the working zero, mentioned in the preceding paragraph, a comparison of the reading of the pencil on the drum with the reading of the bed-plate on the float-band, and with the reading of the graduated staff, should be made both at a rising and falling tide, and entered in the report.

Before cleaning the gauge, its clock should be compared with the telegraph or gun time by the inspecting officer, as a check on the previous recent comparisons entered by the observatory clerk in his daily reports.
43. The balance of the gauge ought also to be tested before be-

Balance of gauge and sotting of pencil. ginning to clean the instrument. This may be done with sufficient accuracy by raising the float completely out of the water by gently turning the stud-wheel, and then taking the reading of a spring-balance hooked, for the purpose, to one of the holes of the band on the counterpoise side. The reading of the spring-balance will give the preponderance of the float. There ought to be a decided preponderance of, say, 3 or 4 tbs . on the float side, but the weight when once adjusted should require no alteration, as it would affect the value of the zero-line. Should the preponderance be found to have increased, it points to a probable flaw in the float sufficient to have admitted an influx of water or to a break in the counterpoise chain on the side of the counterpoise weight.

After testing the balance of the gauge, and before cleaning it, the 2.5 painted line of reference on the band should be brought to the level of the bed-plate, when the pencil should be exactly on the 2.5 or mid-line of the drum (not diagram). If the pencil be found out of this position, the discrepancy should be measured and noted.
44. Then, the float and band should be raised into the observatory for examination and measurement, and the time noted. This is the first step in the dirmantling of the gauge, preparatory to cleaning it. The total length of
the band should be measured, also the distances from the painted $2 \cdot 5$ line and from the painted 0 line upon it to its junction with the float. It is often found necessary to replace an old and worn band by a new one. It is well to carefully mark off the position of the 2.5 line, from the old band on the new one, with reference to the float, so that the new band can be put on in exactly the same relative position as the old one. During the inspection of the Bhávnagar tidal observatory in December 1887, it was found that the readings of the band and pencil agreed, but the measurements for determination of the working zero differed largely from what they ought to have been. The measurements and examination of the band disclosed that it had broken close to the float, and it was found that the observatory clerk had tried to conceal the breakage by attaching the float to the band at the place where the breakage had occurred. The float should be closely examined and, if any water is found in it, it should be repaired or renewed. In such a case it is interesting if the quantity of water which found its way into the float can be ascertained. The influx may have been sufficient to alter the balance of the instrument and raise the working zero. As an instance of this it was found that water had entered the float of the Dublat tide-gauge in November 1882, in sufficient quantity to raise the working zero $0 \cdot 14$ of a foot.

The dismantling of the gauge should now be completed, and it should be thoroughly cleaned and oiled where necessary, special mention being made in the report as to whether the driving clock requires cleaning or not. The reference lines painted on the band and stud-wheel at the last inspection should not as yet be obliterated. It should be mentioned specially whether or not the driving-clock required cleaning.
45. After the several parts of the gange are cleaned, they Refiting gange. should be refitted carefully, the band being replaced so that when its painted $2 \cdot 5$ line of reference is level with the bed-plate, the pencil shall be at, or close to, the $2 \cdot 5$ line on the drum. The working of the band on the studwheel, while the pencil is being moved along the drum from its zero to the highest line of the diagram, should be tested ; and it is best if this can be done at low-water so as to reduce as much as possible the chance of the band kinking. The working should be smooth, and each hole of the baud should fit over the studs freely. Any hole found too tight may be enlarged slightly with a file.

Char. II.]
THE 'IIDES

The bed-plate should be made level both longitudinally and transversely if necessary, and if this operation be found, by spiritlevelling, to have altered the level of the bed-plate relatively to that of the bench-mark of reference, the alteration of level should be recorded.

4b. The refitted gauge being now clean, level, and connected Adjusting gange. by levelling with the bench-mark of reference, is still unadjusted. To ascertain the amount of adjustment required, measurements for determination of the working zero at rising and falling tides should now be taken and recorded as having been made after cleaning the gauge. If a combination of the results of these measurements with the final level of the bedplate make the distance below the bench-mark of reference of the working zero, thus obtained, to differ from the distance of the true zero below the same bench-mark by a quantity appreciable on the scale of the diagram, the position of the pencil must be adjusted until the working zero coincides with the true zero. It is usual to take one more pair of sets of measurements for determination of the working zero (which should be registered as having been made after cleaning the gauge) as a final test of the perfect adjustment of the instrument.

The gauge being in adjustment, the reference lines painted on the band at last inspection should be compared with the pencil readings on the drum, and if the former are found out of position, they may now be obliterated and new lines substituted for them, special care being taken in the painting of the streaks, the upper edges of which mark where the readings of the bed-plate on the band correspond with the readings of the pencil on the engraved lines of the drum.
47. The dismantling, cleaning, and refitting of the auxiliary Anxiliary instra- instruments proceed hand in hand with the simiments.
tide-gauge. The auxiliary instruments are :-
Standard mercurial barometer.
Self-registering aneroid barometer.
Maximum and minimum thermometer.
Anemometer.
Rain-gauge.

Of these only the self-registering aneroid barometer and the anemometer require dismantling, cleaning, and refitting, and these operations are carried out as described in the following paragraphs.
48. The aneroid should be compared with the mercurial baroAneroid barometer. meter and its clock should be rated.

The position of the pencil-marker on the diagram should be made to agree with the reading shown on the dial, and adjusted, if necessary, by the screw ; the diagrams should be examined to see if the marker is working freely; if they show a straight line, i.e., no rises at 10 o'clock nor depressions at 4 o'clock, then the marker will be moving stiffly and requires cleaning.

Thermometer comparisons should be made between that on the aneroid and that attached to the mercurial barometer.

The clerk should be made to read the aneroid and mercurial barometers and the thermometer, and to set the maximum and minimum thermometers.

The diagrams should be examined, and the clerk told if the inking in has been properly done or not; the supply of blank diagrams should be noted, to see that there are plenty for future work.
49. The direction of the vane with the wind, and the marking

Anemometer of the direction on the barrel should be tested. The upper part of the instrument should be oiled and the cups so marked that they cannot be put wrong.

The diagrams should be examined and the clock looked at, to see if new catgut or anything else is required. If the diagrams are faintly marked, the bearing of the helices should be looked at-they should be quite free. If not, their edges should be cautiously cleaned with a piece of fine sand paper.
50. Before ending his inspection, the inspecting officer should see the observatory clerk make an accurate comparison

> Miscellaneous duties before closing inspection. of the tide-gange clock, which, like all the other clocks in the observatory, should be set to standard time, as the tide-tables are now published in terms of standard time. The comparison may be made with the telegraph or gun-time, allowance being made for the difference between local and standard time where necessary, and the result entered in the report.

The clerk must also show that, in addition to being able to rate the clock, he knows how to bring it to correct time when it is fast

Crap. II.]
The Tides
or slow, according to his printed instructions. A comparison of the reading of the pencil on the drum with that of the band at the bedplate, and with the level of the water on the graduated staff should be made and recorded after the tide-gauge has been put into adjustment. The inspecting officer should see that a conspicuous note is contained in the observatory report book, for the information not only of the observatory clerk but of the local official appointed to supervise him and superintend the working of the observatory, to the effect that, whenever any interruption in the working of the tidegauge takes place, owing, e.g., to th:e stoppage of the driving clock, hourly readings should be taken on the diagram by day and night during the interruption. If for any reason these readings can not be taken, then hourly readings of the graduated staff (the zero of which should agree with that of the gauge) should be taken by day and night and entered in the daily reports. Should this amount of frequency be unattainable, then it is indispensable that readings at high and low-water should be taken day and night and registered in the daily reports. If the cause of the interruption be of so serious a nature as to render necessary the removal of the instruments from the observatory, the promptest information should be sent to the officer in charge of the tidal operations to enable him to arrange for an inspection at the earliest possible date. The inspecting officer ends his inspection by taking a note of whatever diagrams, ink, books, pencils or other necessaries are required to be sent to the observatory,
51. The tidal diagrams are examined and prepared for reduction in the head-quarters office in the following manner:-

Preparation of tide diagrame for redaction. Vertical lines in red ink are drawn through each set of the points which have been marked by the clerk of the observatory, showing the position of the penoil when the clock indicated the exact hours of 7 A.M., 10 м.m., 4 р.м., and 6 p.м., irrespective of whether there was a clock error or not; using these lines as bases, intermediate hour lines are then drawn, which, when they cut the curve, show the position of the pencil when the clock indicated each exact hour. The daily reports are next examined to see if there are any clock errors amounting to 3 minutes or more, as compared with telegraphic time or gun signal; if there are, then (x 's) crosses in red ink are made on the tidal curves, the amount of error, fast or slow, being measured from the red lines which have just been drawn. The limit
of 3 minutes' error has been adopted because $\frac{1}{20}$ of an inch is the smallest distance which can be conveniently and accurately laid down in measuring along the curve, and $\frac{1}{20}$ inch $=3$ minutes.

If the clock is fast, the cross is placed in advance of the hourline; if slow, then behind the vertical time-line. Thus, suppose the clock 4 minutes fast at 2 p.m. the cross (x) is placed between the 2 and 3 p.м. lines at $\frac{1}{15}$ of an inch from the 2 p.m. line; if, however, the clock was slow by 4. minutes, then the cross (x) is put between the 1 and 2 p.m. lines at $\frac{1}{15}$ of an inch from the 2. p.m. line. This error is distributed proportionately to the time which has elapsed since the clock was last corrected. As a rule, however, there is rarely any correction of this kind required, for when the clocks are properly attended to, errors of over 30 seconds are at once corrected by the clerks.

Interrupted curves or non-recorded curves caused by the stoppage of the clock, or other suspension of the tidal registration, are carefully filled in by drawing a curve in dotted lines exactly between the two contiguous instrumental curves.

The zero-lines, to which all the measurements for height are referred, are now laid down as indicated in the rules below, in which the terms 'true zero', 'working zero,' 'accepted value of true zero,' and 'adopted level of bed-plate' have the following meanings :-
52. The true zero is that which has been adopted in deter-

True zero. mining the datum-line for heights in the tidetables. Its relative level with regard to the benchmark of reference is fixed. As a rule, the zero corresponds to that originally adopted when the gauge was started, and its distance below the bed-plate was determined when the level of the bed-plate with regard to the bench-mark was fixed.
53. The working zero is the level of the water with reference to

[^17] the bed-plate, corresponding to the pencil being on the zero-groove cut on the drum. In starting the instrument the working zero of course corresponds to the true zero, but from various causes the instrument may get out of adjustment, and its working zero may be altered. The position of the working zero on the diagram is always marked by the clerk rubbing over the groove cut in the drum with a hard pencil. In general at an inspection, the working zero is made to agree with the true zero by adjusting the instrument.
54. The accepted value of the true zero is the distance of the

Accepted ralue of trac zero. true zero from the bed-plate, which was determined when the bed-plate was fixed as regards its relative level with the bench-mark of reference.
55. The adopted level of the bed-plate means the level of the

Adopted level of bed-plate. bed-plate with reference to the bench-mark, which has been adopted in determining the true zero; as a rule this will correspond to the level obtained when the observations commenced.
56. The inspection book must first of all be examined to see if the bed-plate has altered in level relatively to

Rules for fixing true zero on diagrams. the bench-mark. If there is any difference from the adopted level exceeding - 02 of a foot, a correction will have to be applied on this account. The measurements for the determination of the working zero at the various inspections are next examined. If no alteration has been made in the adjustment of the gauge during the inspection, then the whole of the sets of measurements should be grouped, and the mean value would represent the distance of the working zero from the bed-plate on the day of the inspection.

If an adjustment has been made during an inspection, then those measurements for determination of zero before and after adjustment must be grouped separately, and the means respectively applied to the preceding and the following diagrams.

In treating the diagrams for any period between two inspections, the distance of the working zero from the bed-plate must be taken as the mean of the values obtained at the inspections.

The following are the cases which may occur and the ways of adjusting for them :-
I. Bed-plate settled below adopted level.-The true zero will have to be placed above the working zero at a distance proportioned to the amount of the settlement in accordance with the scale of the diagram; hence the measurements from the true zero will be less than from the working zero.
II. Bed-plute raised above adopted level.-In this case the true zero will be placed below the working zero.
III. Bed-plate unultered and working zero at greater distance from bed-plate than accepted value for tive zero.-The true zero in this case will be placed above the working zero.
IV. Bed-plate unaltered and working zero at less distance from bed-plate than accepted value for true zero.-In this case the true zero will be placed below the working zero.
V. Bed-plate settled and working zero at greater distance from bed-plate than true zero.-In this case the true zero would be placed above the working zero at a distance equal to the sum of the corrections on account of each event.
VI. Bed-plate settled and working zero at less distance from bed-plate than true zero.-If the correction for settlement is the greater of the two the true zero will be placed above the working zero, and if the correction on account of the difference of zero-measurements was the greater, then the true zero should be placed beloro the working zero. Obviously the amount in each case would be the difference of the two corrections.
VII. Bed-plate raised and dislance of working zero from bedplate less tian that accepted for true zero.-In this case the true zero would be placed below the working zero at a distance equal to the sum of the two corrections.
VIII. Bed-plate raised and distance of working zero from bedplate greater, etc.-The true zero should be placed below the working zero if the correction on account of the raising is the greater, and above if the latter correction is the greater. The distance between the two zeros is the difference of the corrections.
$\boldsymbol{N} . \boldsymbol{B}$.-If the determination of the true shows that the working zero comes within 0.005 of the true zero on the diagram, then no correction is considered necessary, and the working zero is used as the line of reference in measuring the heights from the diagram. What is meant by being within $0 \cdot 005$ on the diagram is the actual difference between the true nud working zeros reduced to scale.

Water getting into the float or a break in the counterpoise chain on the side of the coun/erpoise weight would have the effect of making the working zero nearer the bed-plate than the value formerly obtained, and this would have to be treated under IV, VI, or VII, according as the bed-plate had remained unaltered, had settled, or had been raised.

A break in the counterpoise weight on the float side.-This has the effect of lowering the working zero and is treated under III, V, or VIII, according as the bed-plate is unaltered, has settled or has been raised.

A kink in the band.-If this occurred, and zero-measurements were taken, it would have the effect of showing the zero so determined as being nearer the bed-plate than it would be if the kink
were removed, and if the band righted itself in the course of working, the determination for zero at next inspection would be at a greater distance from the bed-plate than formerly.

Information to be recorded in the book entitled 'Determination of the True Zero on the Diagram' should be somewhat as follows :-
(1) Level of bed-plate with reference to B. M. unaltered, or settled by or raised by

No correction necessary, or correction under rule equal to has been applied to all diagrams from .
(2) Distance of working zero from feet

Correction on account of (1) or (2) or (1) and (2) = aplied and the true zero above applied, and the true zero has been placed below the working zero from to

No other inspection having taken place, the value of the working zero at the inspection of . . . 192 , as given above, has been used in determining the true zero for the remainder of the diagrams, and for these diagrams the true zero has been placed . . . above the working zero in accordance with rule No.

Cases may occur which will have to be specially treated. All ordinary cases are here dealt with.

Intermediate lines, generally about 6 inches apart, are now laid down in red ink parallel to the true zero-line to facilitate the measurements. These are made with paper scales differently divided, according to the scale which may be adopted for the tidal diagram in each instance.

Surbey of Endia

THE TIDES

CHAPTER III

The Tide Predicting Machine

]. This machine was constructed by Messrs Légé and Cow for the Indian Government under the supervision of Mr. E. Roberts in 1879 on principles suggested by Lord Kelvin. It was brought to India in October 1921 and erected at the office of the Superintendent of the Trigonometrical Survey, Dehra Dun.
(A full description of this instrument is given in Chapter VIII, Volume XVI of the G. T. Survey of India).

Its object is to predict the tides for any port for which the tidal constituents have been found from the harmonic analysis from tide gauge observations, not merely to predict the times and heights of high and low-water, but the depths of water at any and every instant, showing thereby a continuous curve, for a year or any number of years in advance. As already explained in para 16 of Chapter I , the prediction of tides depends on the re-composition, or synthesis, of the partial constituent waves into which the aggregate tide wave has been resolved by harmonic analysis. The machine has been designed so as to avoid the labour which would be necessary to obtain the results by direct computation.
2. Its mechanism depends on the following principles by which Principle of Machine. simple harmonic motions can be compounded in one line.
If any number of pulleys be so placed that a cord passing from a fixed point half round each of them has its free parts all in parallel lines, and if their centres be moved with simple harmonic motion of any ranges and any periods in lines parallel to those lines, the unattached end of the cord moves with a complex harmonic motion equal to twice the sum of the given simple harmonic motions.

As the movement of the pen is equal to double of the amplitude owing to the cord passing over the pulleys, the factor used in computations are so arranged that they allow for this, and give half.

If thercfore a hanging pen-box, consisting of a brass ink-bottle with a pen, be attached to the cord, the pen will trace a continuous curve on a long band of paper moved horizontally across the line of
motion of the pen by a vertical cylinder geared to the revolving shafts of the machine.

By this method a curve is obtained giving the heights and times of the tides for every day in the year from which measurements can be made horizontally and vertically for the times and heights to be recorded in the tide-tables.

Heights also can be read direct by attaching a wooden scale graduated to feet and inches in front of the pen guide, and merely estimating the heights of high and low-water as a fixed line on the pen-box at the same level as the pen reaches the top and bottom of its run. This method is very tiring to the eye and neck, and is also liable to error through parallax when reading the scale, and is therefore not recommended,
3. As at times there is a difficulty in estimating to which precise

Reverse carve. point the horizontal or time measurements for high or low-water on these curves should be made wlen they become flattened, the machine can also be set (by changing the phase angles of the components by 90°) to run a reverse curve, on which the intersections of the curve on the mean-sea-level line represent the times of high and low-water.
4. For time predictions a new Chronograph method has been introChronograph method. duced, involving the use of an electrical contact made by a small wheel substituted for the pen on the penbox on a suitable contact strip fixed at the mean-sea-level. This contact is electrically recorded on a chronograph drum, which is revolved by means of the S_{1} mean solar diurnal component on the machine.

The machine being set to run a reverse curve, as above, a chronotime chart is obtained, on which each separate line, of about 22 inches in length, represents a day's motion, and the clicks thereon represent alternately the times of high or low-water. The chrono. drum is set to commence and end at noon standard time for each particular day, and the noon line is recorded by means of a click made by recording a contact on the drum at the commencement and end of a year, or any other period of observations. If a line be ruled between the first and last click so made, the noon line is obtained, and by sub-divisions the 6 hour lines are ruled in from which the measurements are taken.

By this method it is possible to measure the predicted times of high and low-water more accurately on the greater length of paper allotted to each day viz:-22 inches of paper as against 6 inches on

ROBERTS'S TIDE-PREDICTING MACHINE. congtructid by mesgrs. a liege and co., london.

Chap. III.]
Tee 'Tide Predicting Machine
the ordinary tidal curve. Moreover the exact times of high and lowwater are directly registered and have not to be estimated. It is hoped therefore that, by these means, the time predictions may be improved.

This renders the ordinary system of checking proofs, (and the measurements and copy from which they have resulted), quite simple by the method of reading the differences of times of alternate high waters, as the differences, which are obtained from these more exact measurements, are smooth, and no smoothing of times is necessary, as used to be the case with the old method.
5. A further development of the chronograph method has lately been suggested by Dr. J. de Graaff Hunter M. A., Sc. D., F. Inst. P., who has devised a similar arrangement with multiple contacts corresponding to successive values of ordinate, which records the main character of the ordinary height-time curve. This arrangement indicates the times the predicted height of water reaches the various selected heights and forms in itself an ideal tide-table, such as is mentioned in Darwin's Tides, 2nd Edition, p. 200. Copies of such a table could be vandyked or reproduced for issue to navigators, who would have to read off the information for themselves. For the present however we are concerned with the preparation of ordinary tide-tables giving the heights and times of high and low-water only. These can be obtained, precisely as explained in para 4, from a chrono-chart, without the necessity for running a separate height chart, the whole record being obtained on 2 pieces of paper each only $22^{\prime \prime}$ in length, as against 100 to 200 feet of paper required for the old $3^{\prime \prime}$ and $6^{\prime \prime}$ height-time charts.
6. We will now more particularly describe the machine with reference to the illustrations. The machine consists of a plate of metal of oval form measuring about 3 ft .8 in . wide by 3 ft . deep, supported on two standards. Upon the plate supporting the crank axes of the different movements are fitted the whole of the guide pillars aud bars of the parallel slides-hereafter described. At the back of the plate, and distant from it some 6 in., are bolted two skeleton plates-Fig. 1-carrying the other ends of the crank axes, which aro provided with pointers a for setting, and also dials b divided into degrees, or to 360 ths of the period of the tide component. Between the plates are a horizontal main shaft c, and four oblique shafte d, turning in the same time, the oblique shafts being driven through the main sbaft, two from each end.
7. The machine is driven by an electromotor, the main shaft receiving its motion from the driving gear through the approximately vertical shafts e pinned together. Rivetted to the oblique shafts are the bevel wheels f, which are geared with other bevel wheels g, provided on their axes with endless screws h working into wheels i on the crank axes of the several components. The clock-driving gear also gives motion to the centre recording barrel j-Fig. 3-and through it to the receiving drum barrel. The tracing point moves vertically up and down in the frame immediately in front of the recording barrel.
8. The chief difficulty in the construction of the machine is the finding, within reasonable limits, of proportions which represent with sufficient accuracy the periods of the respective tide components, in order that the machine may be used for a considerable period of pre-diction-say for twelve months' tides. Very great success has been attained in this respect in the present instrument. For instance, the error of the period of the chief component-the mean lunar semidiurnal-relatively to the mean solar semidiurnal, is inappreciable during a whole year's predictions, amounting to about $0 \cdot 10$ deg. only in a period of fifty years. The greatest deviation from strict accuracy is 0.37 deg. after a run representing twelve months. This is, however, one of the smaller components, and insensible in its effect. This part of the design may therefore be regarded as practically perfect.
3. A crank k, Fig. 2, is fitted to the axis l of each component. A sliding piece, carrying a steel guiding pin m for setting, is fitted in each crank. The guiding pin is thrown out from the centre of the crank axis by means of a fine-cut screw and micrometer head n. The requisite distance of the throw of the guiding pin must be previously determined by the proper analysis of tidal observations of the port for which the predictions are required. It may be here remarked that a year's tidal observations will yield fairly good constants, but a longer period of observations is very desirable. A horizontal crosshead o carries at its centre a very light and wellbalanced pulley p. The crosshead is fitted at one end with an adjustable steel rod q, moving freely in two pillar guides, drilled out nearly their entire length to reduce the touching parts to a minimum. The opposite end of the crosshead carries a projecting fork, which travels with freelom on either side of a narrow, flat brass bar supported on pillars. The steel rod of the crosshend is

ROBERTS'S TIDE PREDICTING MACHINE.
odmbructid it magna a lége ano co, london.

balanced by an adjustable sliding weight, fitted in continuation of the projecting fork, so that the centre of gravity of the crosshead and guide is in a vertical through the centre of the axis of the pulley. The crosshead thus balanced is counterpoised by a cord and weight passing over pulleys at some distance above it, in a vertical through its centre of gravity and the axis of the pulley. At the back of the crosshead are fitted two parallel steel jaws :, the lower one adjustable, in order that the distance between them can be regulated. Both the brass bar guide and the steel rod guide are divided to millimetres; the brass bar guide for approximate and the steel rod guide for the accurate adjustment of the throw of the crank pin, for which purpose the upper pillar guide of the steel rod is furnished with a vernier.
10. The head of the micrometer n is also divided and may be used with the divisions of the brass bar guide. The pulley crosshead is movable on its steel rod for the perfect adjustment of the pulley about the centre of motion of the crank axis. A fine toothed wheel f is fitted on a slotted cone u, which can be clamped to the crank axis by means of a screw nut v. This contrivance is necessary, because each of the components requires to be set in its proper position, previously determined by calculation at the commencement before starting the machine. The setting dials b are toothed round their outer edges and movable round their centres by a pinion for setting.
11. A fine flexible wire fixed to a large screw-head, a little to the right hand at the bottom of the date-dial in the centre of the machine-see the illustration-passes alternately under and over the pulleys of the lower and upper series of components, till, leaving the large pulley, it hangs vertically above the ink-recorder slide. The wire carries at its free end an ink-bottle fitted with a fine brass recording pen. The ink-recorder travels in a geometrical slide, and is suspended to give just sufficient pressure to ensure contact with the paper of the recording barrel. The recording barrel is fited with brass pins at equidistant intervals, to form the time indications on the paper by perforation.

The time lines are ruled up by hand through the machine perforations, when the traced paper has been removed from the machine, a whole year's rulings only occupying about an hour and a balf.
12. An index for selting the recording barrel to time is fitted behind the framework near the upper axis of the barrel. The paper, which
is continuous, and supplied from a reel w, Fig. 3, passes round two grooved rollers x at the back of the recording barrel, and is held in position whilst the pins enter the paper, and after receiving the traced curves, is wound round the receiving barrel y. The receiving barrel rests on toothed driving wheels, which are driven by the recording barrel, and by friction turns and slips to accommodate itself to receive the recorded paper.
13. The machine used to be run when in England by means of a small water motor and a falling weight. As an electromotor is now used the lower part of the machine viz:-the cord barrel, clockwork gearing, warning bell etc; are no longer utilised but they are left in position, as their weight serves to stabilise the machine.
14. The setting of the machine for the prediction of any port for which the tide components are known is as follows:-The dials b are first turned so that the epoch or time of maximum is exactly under or above the highest or lowest point, according as the component is situated on the upper or lower row of components.

The cranks k are thus set vertically-and the setting of the amplitudes or rather half amplitudes of the components is carried out with all the screwheads of the micrometer boxes on the front of the machine turned downwards, the slotted cone v of the wheel f, on the axle l, having been first released-and the guide pin m thrown out to its proper range according to scale required to represent the half amplitude of the component.

The setting of the dial pointers on the back of the machine having been determined previously by calculation for the time of starting, the dial pointers are set and the slotted cones are tightened up. The recording barrel is then set to time and the wheelwork set in motion. The complete setting only occupies a few minutes.
15. The date dial in the centre is to show the progress of the record, which can be marked occasionally to facilitate the entry of the dates after the record has been removed from the machine. Noon, midnight, \&c., are distinguished from the perforations of the other hours of the day by a few supplementary pins. Two speeds of travel can be given to the paper, viz, 1 in . and $\frac{1}{2} \mathrm{in}$. per hour. A fixed vertical rod near the ink-recorder slide carries ruling pens for the tracing of base lines, such as docksills, river bars, or mean tide levels. If desired the paper can thus be ruled its entire depth to represent feet, metres, \&ce, as it passes through the maohive.

In practice it has been usual to mark two horizontal lines onlyone representing Indian spring low water mark as defined in the tidal reductions and the other mean sea level.
16. An idea of the saving effected by the machine may be gathered from the fact that it would take a computer not less than 5 or 6 months to obtain the results by computation which can be obtained by measurement in a few days from the curves run on the machine. The machine actually runs off the tidal curve for one port for height and time in about 4 hours. If height and time are done separately δ hours will complete the two curves required.
17. The value of the machine will be very great in any work where the whole tide-curve is of service, and will be of great value in engineering works in which a foreknowledge of the tides is necessary, such as in constructing the foundations of quay walls, embankments, dock sills, \&c., the whole time during which the work can be prosecuted being seen at a glance for every tide.

Notes regarding accebsories required for the Tide-predicting Machine.

18. This should be reeled on stout strawboard centres of 2 inches Paper. internal diameter and not less than $\frac{f}{4}$ inch in thickness. The rolls should contain from $800-8 \mathrm{i} 0$ continuous feet of paper, which is sufficient for 4 curves on the 6 -inch or 8 curves on the 3 -inch scale. The outside diameter of the roll should not exceed 8 inches, therefore if thick paper is used it may be necessary to make rolls large enough to run off only 3 curves on the large scale, (about 600 feet of paper). The width of the paper should not be more than 22 inches nor less than $21 \frac{7}{8}$ inches. The last supply was obtained through H. M. Stationery Office and previously from Messrs John Dickenson, Old Bailey, London.
19. The wire originally used was brass wire $0 \cdot 006$ inch diameter.

Wire. The wire used in England prior to the shipment of the machine to India was phosphor-bronze 0.005 incll diameter. This wire was tried in India but was found very brittle and easily snapped. It was moreover difficult to put on the machine, for the same reason. A very strong woven fishing line was tried but proved too extensible for the purpose.

A satisfactory wire has since been obtained for the machine, which is in use at present.
20. Cord. The counterpoise cord is silk eye-glass cord.
21. The old pens with glass points were supplied by Messrs Leégé. Pens. As these glass points were continually breaking new brass points were made locally, which have given far finer lines and cleaner curves.
22. Ink made from red Eosine powder dissolved in water is satis-

Ink. factory, about one table spoon of glycerine being mixed with each pint of solution. Too much glycerine causes a thick slow drying trace.
23. These scales which were supplied by the National Physical Laboratory, Teddington, England are 12.025

> Scales for time measurement direct on height chart. inches in length (2 days) divided into 2 equal parts of 24 hours. Each hour is divided into 10 parts measuring 6 minutes. It would have been better had these been 6 parts of 10 minutes. Also the scales were made 12.025 inches in length instead of 12 inches to allow of the use of a rather thicker paper, which, when stretched round the recording drum of the machine had a slightly larger circumference than paper of the normal thickness. The scale in use is of boxwood with ivory inlaid scale glued to the edges of the wood. A finer edge on plain boxwood would be an advantage. As the method of measuring times direct from the height chart is not much used now, there is no necessity for replacing this scale.
24. The scale used in England was a metal scale 24 inches in length (8 days) divided into 16 parts marked

> Scale for measar. ing times for riverain porte. alternately A and M , (afternoon and morning), each ' A and M ' is divided into 12 parts each equal to 1 hour and again into subdivisions of $\frac{1}{2}$ an hour.
Two set squares were also necessary for use with the above scale.
Instead of this scale and the set squares which were used in England celluloid scales have been prepared on the 24 hours system, each consisting of 2 scales jointed at mean sea level. The horizontal scale is set in proper position to read the height and time corrections on the vertical scale (which itself consists of 2 scales actually set at 6 hrs. apart by scale). The reasons and use of this scale are explained in paras 110 and 129-132 of Chapter I.
25. Twelve wooden scales 1 foot long have been made for this

> Ecale for measaring chrono-bheet. purpose with central portion $5 \cdot 51$ inches equivalent to 6 hours in time with primary divisions to show single hours, one end being divided into secondary
divisions to show 10 minutes, with subdivisions to 2 minutes. The length $5 \cdot 51$ was adopted instead of $5 \cdot 50$ to allow for the normal thickness of the paper, which, when stretched on the chronograph drum has a slightly larger circumference than the drum itself.
26. For height measurements the following scales are used $\frac{1}{2}, \frac{3}{4}, 1$, $1 \frac{1}{2}, 2,3$ and 4 inches to 1 foot, divided into

Scales for height measurement. equivalents of feet and inches.

The following list shows the scales used for the various ports:-
$\frac{1}{2}$ inch. Bhāvnagar.
$\frac{3}{4}$ inch. Mergui.
I inch. Karāchi, Okha Point, Port Albert Victor, Bombay Apollo Bandar.
$l_{\frac{1}{2}}$ inch. ('Maskat), Porbandar, False Point, Akyab, Diamond Island, Bassein.
2 inch. Suez, (Perim), Aden, Bushire, Marmagao, Kārwạr, Cocanaada, Vizagapatam, Port Blair.
3 inch. Basrah, Beypore, (Minicoy), Madras, Elephant Point.
4 inch. Cochin, Tuticorin, Pāmban Pass, Galle, Colombo, Trincomalee, Negapatam, Dublat, Diamond Harbour, Kidderpore, Chittagong, Rangoon, Amherst, Moulmein.
27. No. 1 Tid Pred. Computation form for setting and checking Foras. machine for height or height and time combined. No. 2 Tid Pred. Computation form for setting and checking machine for time only, (Chrono-method).

No. 3 Tid Pred. Computation form of height and times for Riverain port predictions.

No. 4 Tid Pred. Form for eutering tide-tables for open sea-ports for press.

No. : Tid Pred. do do for Hooghly R. ports.
No. 6 Tid Pred. do do for Bassein R. ports.
No. 7 Tid Pred. do do for Rangoon R. ports.
No. 8 Tid Pred. do do for Moulmein R. ports.

Notes on Tide Machine and Tide Predicting.

28. Before attempting to lift the top portion of the machine, the dials and main drive slafts should be removed, in order to lighten it sufficiently for four coolies

Two sound wooden poles 6 feet long 3^{*} diam. should be lashed firmly to the frame, and their ends tightly secured to the top dial bracket, so that when these poles are raised there is no danger of over-turning.

The top portion should be raised from the floor on to the base of the machine in two stages; first from the floor on to two high stools, then the coolies can get their shoulders under the poles and carry the top portion straight forward on to the base.

Two holding down bolts should be put in at once, but, before all four can be fitted, it will probably be found necessary to slightly loosen the bolts which attach the brass plate to the top frame.

Put on the main drive shafts and dial plates. Before tightening up the dial plate, remove all the worm shafts, so that the crank spindles can be swung round freely by hand.

The dial plate is fixed by five bolts thus :-

There is a certain amount of play in the bolts $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, so that the dial plate can be rocked slightly about the bolt A.

Make the bolt A fairly tight, then find the position for the dial plate in which all the crank spindles will rotate quite freely in their bearings, and then clamp $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, so as to fix the dial plate in this position.

Put back the worm shafts into position.

Chap. III.J
The Tide fredicting Machine
29. Table and Diagram of Components:- The following table shows the names of the Tides, with their symbols and numbers inscribed on the tide-predicting machine.

Symbol	Name of Tide	Numbered on machine
M_{2}	Principal or mean lunar (semi-diurnal)	1
S_{2}	Principal or mean solar (semi-diurnal,	2
K_{1}	Luni-solar declinational (diurnal)	3
0	Larger lunar ", "	4
N	Larger lunar elliptic (semi-diurnal)	5
P	Larger solar declinational (diurnal)	6
K_{2}	Luni-solar declinational (semi-diurnal)	7
μ	Lunar 'variational' (semi-diurnal)	8
ν	Larger lunar 'evectional' (semi diurnal)	9
L	Smaller elliptic (semi-diurnal)	10
T	Larger solar elliptic (semi-diurnal)	11
Q	Larger lunar declinational elliptic (diurnal)	12
J	Supplementary lunar declinational elliptic (diurnal)	13
MS	Compound luni-solar (quarter-diurnal)	14
2SM	Compound luni-solar (semi-diurnal)	15
η or Sa	Solar (annual) elliptic	16
2η or Ssa	Solar (semi-annual) declinational	17
$\mathrm{M}_{4} \& \mathrm{M}_{6}$	Two mean lunar over-tides of the semidiurnal tide	18\&19
S_{1}	Mean solar (diurnal)	20
2 N	Second order lunar elliptic (semi-diurnal)	21
$\mathrm{M}_{2} \mathrm{~N}$	Compound lunar (quarter-diurnal)	22
$2 \mathrm{M}_{2} \mathrm{~K}_{1} \& \mathrm{M}_{2} \mathrm{~K}_{1}$	Two compound lunar (ter-diurnal) tides ...	$23 \& 24$

Diaglam:-The following diagram shows a back view of the machine with symbols and numbers of each tidal component.

30. See that, when the milled heads on the cranks are downwards, the dial pointers are vertically upwards. See that

Poiuts to be observod before starting the machine.
all gears, worms etc. are marked with the number of the component which they are working (see Table on previous page).

See that the worm gears are well in the teeth of the wheels they drive, otherwise the teeth are likely to get destroyed, also that there is not much play in the worm shaft ; that all shafts are perfectly true and all bearings well oiled.

There must be a little play in the worm shafts or their bearinge will run hot.
31. Set all components to read 90° or 270° on the dials and clamp. The fixed dial pointers should read 0°.
Setting verniersànd scales.

Taking each component in turn, loosen the clamping screws on the sliding rod and bring the top line of the scale on the rod in exact alignment with the top line of the fixed vernier. In the case of S_{1}, one of the centre long lines of the scale on the sliding rod should be set; otherwise this rod may hit the pen guide.

Then set the numbered alaminium scales to zero.
32. Set all components to 90° or 270°.

Wind about 60 feet of wire carefully on to Winding on wire.

> a fishing reel with a fairly strong check action.

Fix the reel upright on the floor below the pen guide. Open the back of the pen guide and draw the wire through it; attach a weight to the free end of the wire, pass the wire over the pulleys of M_{2}, S_{2}, K_{1} etc. in rotation keeping a steady strain on it all the time; at any stop allow the weight to hang freely keeping the wire in tension.

When the M_{6} pulley has been passed, carry the wire straight down to about 12 inches from the floor and let the weight hang free.

Hold the wire near the reel firmly and cut.
Keeping the weight hanging free, so as to keep the wire in tension, attach the other end by a loop to one of the hooks on top of the pen-box.

There are three hooks on the pen-box or moving pen to which the wire can be attached. It has been found in practice that the central hook serves all purposes. However in case of deficient or excessive contact of the pen with the paper, (or the wheel with the copper contact in the chronograph method), the wire may be attached to the back or forward hook to improve matters. •

Pull steadily on the weighted end of the wire until the pen is about 6 inches above the bottom of the pen guide.

The pen will now maintain the tension in the wire. Hold the wire firmly near the weight and cut off the weight.

Keeping the pen hanging free about 4 inches below the middle of the pen guide, pass the free end of the wire under the pulley of S_{1} and through the hole on the rim of the milled screw on the brass plate and fix it. Wind $u p$ the wire on the screw until the pen is at the middle of the pen guide and clamp.

Great care must be taken to keep the wire always in tension or it will kink or spring off the pulleys.

The machine is now ready for setting.

Setting and Running the Machine

33. The method usually adopted for predicting times of tides is to obtain a chronograph chart for times by the method 2 described hereafter and then to obtain heights independently by method 1 , but, as method 1 was adopted in England for both time and height combined, and is the method for which the machine was originally intended, this method is described first.
34. For height or height and iime diagram combined.

Method 1 .
First clean the two fixed pens and the moving pen and fill with ink.
If the ink runs too freely, put pins in the airholes on top of the pens.

The moving pen should be suspended from one of its hooks, (generally the central one), so as to have the pen pressing sufficiently against the paper on the drum.
35. Put the drums in position with the paper roll on the drum A on the motor side of the machine.
Patting on the See that the points on the big drum C run рарег. freely in the two grooves on the roller B.
Wind the paper as in the diagram below:-

36. Set the upper of the two fixed pens so as to make a line

Setting npper fixed pen to mean-sea-level line.
37. In the case of Riverain ports the lower or datum-line pen is not set.

There are altogether 9 Riverain ports viz:Basrah, Dublat, Diamond Harbour, Kidderpore, Chittagong, Amherst, Moulmein, Elephant Point, and Rangoon.

In the case of all other ports, set the lower or datum-line pen to the measured distance to scale of the datum below mean-sea-level
for the port in question which is published in the tide-tables and is also given in table XXI at the end of chapter I. It should also be entered in the Form 1 Tid. Pred. as A_{0}.
38. Set all dial pointers without clamping to 90° or 270° and verify

Setting moving pen to mean-sea-level. that all verniers and scales are at zero. Then, by twisting the milled screw to which the fixed wire is attached, move the pen until the moving pen coincides with the mean-sea-level.

The last movement of the pen should be a rising one, since, when the wire is slackened, it does not always set tightly at the bottom of the grooves on the pulley wheels and so the pen does not fall as much as it should.
39. The amplitudes and phases of the angles for setting on the

Datu for setting. machine are those obtained from the Form l Tid. Pred.
In the case of Diurnal charts for Riverain ports only 8 components are set, the amplitudes of the remaining 16 being set to zero, and the dials corresponding being left unclamped.
40. Set all dial pointers without clamping vertically upwards to 0°

Setting amplitades. or 181°. The fixed pointers on the dials should be at 0°, so that the milled heads of all the cranks
are downwards.
Taking the amplitude of each component in turn by twisting the milled head attached to the micrometer box on its crank, bring the pointer to the correct number of millimetres of amplitude up or down on the aluminium scale, then set the first decimal place by means of the vernier, note the position of the pointer on the milled head and use the graduations on the milled head to set the 2nd decimal place. (One small division on the milled head $=0.025$ millimetres).
4.1. Move the drum \mathbf{C} towards the drum D so as to draw a fresh portion of paper around the drum. The moving

Check on position of pen. and the 2 fixed pens will all trace-lines on the paper.
The distance between the mean-sea-level line and the trace of the moving pen can be measured off by means of a pair of compasses and read off from a diagonal scale and compared against the pen-height calculated in the Form 1 Tid. Pred. (Height-Sheet). Care should be taken that there is no wire slackness when this test is made. An error of less than 0.0 inch can be accepted. Wire
slackness can be detected by turning all the dial pointers back to 90° or 270°, when the moving pen should again coincide with the mean-sea-level line. If not, the process of setting the pen on the mean-sea-level line should be repeated, and when the dial pointers are again turned to 90° or 2.30°, the pen height should check. In runaing the machine it is found that the wire slackness is taken up, and this can be verified by the final pen-check afterwards described.

It may be here remarked that the movement of the pen is equal to double the amplitude, owing to the wire round the pulleys. The factors given allow for this and give half i.c.-in the computation the pen height is obtained by dividing the result of the summation by $12 \cdot 7$ instead of $25 \cdot 4$, the number of millimetres per inch.
42. The dial pointers are now set to the phase angles and clamped-

Setting Dials. these phase angles are obtained by subtracting ζ from 360^{\prime}, in order to avoid the machine tracing a reverse curve, vide para 3. These dials should ordinarily be all clamped as tight as possible by hand. If a spanner is used, it should be very lightly applied, as the dials tend to tighten up when the machine runs forward, and the teeth of the wheels are liable to get damaged while working and especially when unclamping.

The phase angles are checked over after clamping, and the position of the pen, checked as before, should give the value R_{2} within the same limits as mentioned above. A further check can be applied by checking the values $\mathrm{RMC} \operatorname{Cos}, 360^{\circ}-\zeta$) on the opposite side of the machine in case of gross error.
43. The above settings set the machine for local mean noon on 28th December of the year preceding that for which the height predictions are required ; the big pointer on the date dial should be set to this date.
If the tide-table is in standard time, the machine must be run forward or back by hand until the correct value for S_{2} is obtained (see table XXI, Chap. I). If the machine has to be run back, this should be done smoothly and slowly to avoid loosening any of the components.
44. Having set the machine to standard time as above, set the

[^18] drum for time as follows:-The recording drum is fitted with brass pins at equidistant intervals to form the time indications on the paper by perforations:-vide diagram opposite. It will be seen that starting with the central pin of a group of $\overline{5}$ pins we pass over in succession $\overline{5}$ single pins, then to the first of a group of three pins, then 5 single pins and to the centre of a group of 3

To fine paga 16.
pins, then 5 single pins and to the last of a group of 3 pins, then 5 single pins and come on again to the centre of a group of 5 pins. It is immaterial whether we take the noon line on the lst., 2nd. or 3rd. group of three, provided it is the correct one in sequence of the punctures but it is better to make sure of the starting position, by setting on the centre of a group of 5 pin-punctures.

Move the big drum, which should be unclamped, by rotating the drum D in a counter clockwise direction, until the middle point of the 5 punctures on the drum comes under the wire, by lifting the lid of the pen slide and looking to see that the wire is immediately above the central puncture. Parallax may be avoided by looking through the tips of the thumbs placed almost together centrally in front of the wire. Clamp the big drum by tightening the nut on the spindle underneath. Do not use too much force in tightening up, as the spindle is liable to get broken. The nut has a reverse action and will tighten up as soon as the machine runs. Write on the diagram paper the following information:-

Name of Port.
Scale.
Date and time of 1 st setting (whether standard or local time).
45. There are two notches on the wheel in which the gear lever Engaging the gear engages, one marked R which gives 3 inches of paper for the day, the other, not marked, which gives $;$ inches of paper to the day. The mid-position between these notches is neutral.

The gear clutch frees the gear and enables the paper to pass through freely.

The notch marked R, giving 3 inches of paper is used for the diurnal charts of all Riverain ports (except Bassein), and for the tidal curves of all open seaports of which only the heights are required, the times having been already determined by the chronograph method mentioned in paras 4 and 5 .

If howerer combined heights and times are required to be read for open seaports, (or Basscin). from the one chart, the notch giving the 6 -inch scale must be used. Lingage the gear suitable for the port and pupose required by conaging the gear lever in the appropriate notch.
46. Before starting, oil all working parts of the machine thoroughly. Kanning themachine. . To start the machine, put the motor switch to the "start" position. If the motor does not
turn, assist it to start by turning the horizontal spur-wheel on the machine in a counter clockwise direction.

As soon as the machine is running at full speed put the switch over to the "load" position.

Run the machine for 24 hours exactly, this is done by watching the S_{2} dial pointer which does 2 revolutions per day and returns to the same position at midnight and noon The current should be switched off when S_{z} indicates midnight and the machine will come to rest shortly before the pointer of this dial reaches the noon position, as origiually set, to which it can be moved by moving the spur-wheel of the machine forward by hand.

The wire should now be exactly over the noon point on the drum 24 hours from the starting noon point. If not, unclamp the drum and reset allowing for the lag and try again for another 24 hours. It is a case of trial and error but there should be no difficulty in getting it right in the 3 days between 28th. December and Ist January. from which the prediction commences, after which the machine may be allowed to run on. While running, it may be advisable to occasionally enter a date on the diagram from the pointer on the date dial.

After 369 days stop the machine a short time before local or standard mean noon lst January (31st December in leap years) whichever is earlier. This is done by watching the S_{2} pointer which does 2 revolutions per day. It should be shut off when the \mathbf{S}_{2} pointer is about 180° from its final reading on the last day.
47. The machine has to be brought up to local mean noon on the
(1) Procednre smpposing local mean noon is the earliet. date above mentioned in order to check pen height \mathbf{R}_{3} and phase angles ζ after 369 days motion against those computed in form 1 Tid. Pred. This is effected by moving the spur-wheel of the machine forward by hand till the S_{2} dial pointer reads the value ζ^{\prime} for this particular component on form 1 Tid. Pred.

The phase angles are now all checked against the computed values given on the form 1 Tid. Pred. They should all check within half a degree of the correct value. An error up to half a degree may occur owing to play in the gears or in the pointers.

In order to obtain a trace of the local mean noon line and to determine the point to which the pen-height check has to be taken, the cord between the pulleys $M_{2} N \& 2 N$ is gently pulled outwards, care being taken that the cord settles back in the grooves. This

Ohap. III.]
has the effect of raising the cord and tracing the noon line on the diagram. The intersection of this line with the curve is the point to which the pen-height above mean-sea-level is measured by means of compasses when the curve is completed.

The machine is again run forward by hand as before till the $\mathbf{S}_{\mathbf{2}}$ dial pointer reads the value of ζ^{\prime} for this component for standard time, the cord being drawn out as previously to mark the standard noon. The standard or local time line (as the case may be according to which was adopted in setting up) should agree with the line drawn between the punctures representing noon on the diagram.
48. It is obvious that the process has merely to be reversed i.e.,
(2) Procedure the machine has to be stopped and the standard noon supposing standard time is the earlier. line marked first and then it has again to be rum on by hand to the local mean noon to mark this latter time and to obtain the checks of pen height and phase angles.
49. The machine is now allowed to rum on by means of the motor Conclusion of curve. for a day or so before taking off the curve. In leap years the dial, though indicating January lst, is only at noon 31st December and it is essential at least to run till midnight of the lst January is past, so as to ensure that no high or low-water curves are missed up to the termination of the year's prediction. It is as well however, whether predicting for leap years or otherwise, to run the machine for a day or so extra to form a check against the succeeding year's prediction, if required, and enable smoothing to be carried out.

The machine takes about 4 hours to run off a year's curve for one port, whether a chronograph chart for time, or height and time.
50. If it should be necessary to change a roll in the middle of Changing paper
while running a curve. inches of the old paper still remains clear of the running a tide, stop the machine when about 18 big drum C (vide para 35).
Put on the new roll, cut the free end of the paper straight and pass outside the old paper round cylinder B and between the old paper and drum C .

Now run the machine and press the free edge of the new paper keeping it vertical between the old paper and drum C until it is gripped by the time points and carricd round.

When it emerges between \mathbf{C} and \mathbf{D} pull gently on it and pass round D until it is gripped there. Care should be taken that the new paper is correctly daterl, and name of port, scale, etc. inserted.

51. Setling and running the machine for time with the chronoyraph.

Method ${ }^{2}$.
This method has been introduced with a view to obtaining more accurate measurements of the predicted times of high and low-waters for open seaports.
52. The chronograph drum has first to be carefully levelled up, aligned and its spindle attached to the spindle of
Lerelling and attaching Clirono. Dram. the S_{1} dial and the connecting screw tightened up.
The drum should then be run to see if it runs smoothly.
53. Put the paper carefully round the Chrono-Drum, seeing that

Fixing paper on the Cbrono-Dram. the overlap is well turned in and the paper fits tightly when the paper is pasted down and the clips are put on.
54. The contact-wheel should now be substituted for the ink-pen Fitling contact-wheel. on the pen-box, and the latter suspended by its central, (or other), hook, vide para 32.
The little contact strip with projecting copper contact, which is attached to a small strip of wood for the purpose of insulating, may now be placed in position and clamped on the line corresponding, to the mean-sea-level viz, about 11 or $11 \frac{1}{2}$ inches from the bottom of the pen guide. This clamping should not be done too tightly as there is a danger of the pen-box jamming in the guide when running. It should however be just sufficiently tight to give a good contact without checking the free motion of the pen.
55. Electrical connections should now be made as shown in the Electrical connections. diagram opposite. One connection in the circuit should be left open till actually required for use in order to save current.
56. Unclamp all dials and set all dial pointers to 90° or 271°. setting contact-wheel The amplitude scales, both main and vernier, should od pen-box to zero. now be checked to see that they read zero.

Now ewing the \mathbf{M}_{2} dial pointer slowly from 0° down towards 270°, counterclockwise. If the contact wheel is in correct adjustment, a click should be heard on the relay the instant the \mathbf{M}_{2} dial pointer reaches 270°. If the click does not occur precisely at this point, the wire to which the pen-box is attached, must be lengthened or shortened by unclamping and turning the milled ocrew to which the fixed end of the wire is attached, so as to raise or lower the contact wheel until satisfactory contact is obtained. Clamp tentatively and test contact by moving the M_{s} dial

pointer as before, counter clockwise from 0° to 270° and again clockwise from 0° to 90°, seeing that the click occurs exactly at 270° and 90° respectively. Repeat the adjustment until perfect. The object in swinging the dial pointer counter clockwise and clockwise as above, is to ensure that the same point of the wheel comes in contact with the copper strip in each case. Consequently, when the machine is run, the first contact, which is recorded when the pen-box is running downwards, is made by the same point of the wheel as the last contact, when the pen-box is running upwards. Now when the pen-box is running downwards, high water is being recorded, so the commencement or the break on the chrono-drum represents the time of high-water, and when the pen-box is running upwards, low-water is being recorded, so that the end of the break on the chrono-drum represents the time of low-water, and these are the points to which measurements are afterwards made. It is important to see that the low-water contacts are not dragged i.e.-that the breaks on the chrono diagram terminate the moment the low-water contact is completed. For this purpose it is advisable to make the contacts as light as possible and to have a fairly strong spring on the pen on the chrono-drum to pull the pen back immediately the contact terminates.
57. The amplitudes should now be set as explained in para 40

Setting amplitudes. but to the values given in Form 2 Tid. Pred. The pen height should then be checked in the ordinary manner or by measuring the height of the contact. wheel above the contact strip with a pair of compasses gripping them with a piece of cloth so as to avoid an electric shock, and comparing this with the computed value of R_{1} from Form 2 Tid. Pred. by measurement on a diagonal scale.
58. The dial pointers are now set as explained in para 42 but to Setting dial pointers. the values given in Form 2 Tid. Pred. Check the height of the contact wheel, as above, against the computed value of R_{2}.
59. If time is required in standard time, move the machine by Setting to Stand- hand till the S_{y} dial pointer gives the correct ard time. reading for standard time as in para 43.
60. Set the date dial to read 28 th December before running Setting the date dial. the machine.
61. Close chrono-circuit, ink up chrono-pen, press wires adjoining

Preliminaries to ranning. \mathbf{M}_{2} component so as to cause a contact between contact wheel and contact strip in order to record a click for position of noon on chrono-sheet, this

Chap. III.]
also tests both electrical circuits on the machine and the chrono. Mark name of port, date and time (standard or local).
62. Start the machine watching the S_{2} dial pointer which does 2 Rnaning the machine revolutions per day, and returns to the same position at midnight and noon, the current being switched off when S_{2} indicates midnight. The machine will then come to rest shortly before the pointer of this dial reaches the noon position as originally set, to which it can be moved by turning the spur-wheel of the machine forward by hand.

The tapper is then pressed so as to record the 2 nd noon position, repeat this operation until all lag is taken up, and the noon position on successive days remains unchanged.

After this the machine can be allowed to run on. Mark the high and low-tide breaks for a fer days only on the chrono diagram-high-tide, falling pen, with red chalk-low-tide, rising pen with blue chalk. The remaining breaks can be chalked up in continuation of those already marked after the diagram is removed.

A man may be then left standing alongside to see that the recording fountain pen is inking properly and to look after the machine generally before it reaches the end of a diagram.

Before changing or removing a diagram the machine must be stopped and run up by hand as before till S_{2} reaches the correct noon position as described previously, a mark being made by pressing the wires adjoining the M_{z} component together so as to cause a contact between the contact wheel and contact strip and thereby to record a click corresporling to the final noon line.

The diagram can then be removed by releasing the clips and cutting the paper along the 0 hour line on the chrono-drum. Should it he necessary to revolve the drum in order to do this, the reading of the S_{1} dial must be carefully noted before it is unclamped and the S_{1} dial revolved in a clockwise direction to avoid backlash when restarting. The new paper can then be put on and the S_{1} dial pointer brought back and clamped to its previous reading.

Write on the new diagram the name of the port and date and carry on as before, marking the noon positions (standard or local as required) for the lst, 2nd or 3rd day, till all the lag of the drum is taken up and again before removing the sheet.

When the whole year has been run, the checking of the dial readings of the machine after 369 days at local mean noon is made
as in para 47 , the check of the height of the contact wheel corresponding to the pen check, being carried out as described previously. The machine is then run up to midnight of lst January (31st Dec. in leap years) and the final chart removed.
63. In the event of any accidental stoppage of the machine when running e.g. :-on account of a snapped wire, missed contacts, or other irregularity, it is convenient to be able to set the dial pointers for the commencement of any particular month, rather than to re-run the whole tidal curve or Chrono chart from the very commencement of the year. 'The table XXII at the end of Chapter I, which is based on the speeds of the tides, will be found very useful for this purpose, as the angles given in this table have only to be added to or subtracted from the original phase angles $\left(360^{\circ}-\zeta\right)$ or $\left(360^{\prime}-\zeta+90^{\circ}\right)$ on the Forms 1 and 2 Tid. Pred. respectively to obtain the appropriate setting of the dial pointers for the first of every month, the amplitudes set on the front of the machine remaining unchanged.
64. Two other mothods of running the machine, which are sometimes necessary, are included in the abstract of the ordinary methods of rumning the machine given in the following table, but as they are both similar to Method 1, there is no need to describe them separately in detail.

ABSTRACT OF PROCEDURE ADOPTED

Method 1.
To obtain a Height chart, or a Height and Time chart combined.

Suspend pen-box with pen, by central or other nook.

Put paper on drum, fill pens witl ink, set mean-sen-level and datum-line pens.

Set all dial-pointers to 90° or 270°, see that the Hxed pointers are all at 0^{3}; check that amplitudes read zero; set pen to mean-sea-level line.

Turn dial-pointers to 0° or 180°, so that the screw-hends of all the micrometer boxes in front, point downwnrils. Set amplitudes from 1 Tid. Pred. and check position of pen. (All pen checks should agree within 0.05 inch).

Set dial-pointers from 1 Tid. Pred., clamp, then check dial-pointers and height of pen.

If standard time is required, move the machine by hand till S_{1} gives the correct reading.

Set date dinl to read 28th December. Clamp up drum with wire over the centre point of the group of 5 points on the drum. Mark name of port, clate, time and scale of chart. Run on for $\mathbf{2} 4$ hours and check position of drum, correcting if necessary, finally drawing the vertical noon line by pulling the wire between $M_{2} N \& 2 N$ to one side aud releasing the wire. See that all lag is taken up within the three days before the commencement of the year's predictions, correcting the position of the drum ench day if necessury, ns before.

Note:-For height ouly, the 3 -inch acale, mark ed K on the gear wheel, is used. For height and time, the 6 -inch scale.

Check dial-pointers and height of pen after 309 daye nt L. M. N. from 1 Tid. Pred. Run the machine on for a day or so and tlien remove the chart.

Method 2.
To obtain a Chrono Sheet.

Suspend pen-box by central or other hook, and see the contact-wheel makes proper contact.

Put paper on chrono-drum, connect up electric circuits leaving chrono-circuit open.

Proceed ns in Method 1 for setting dial-pointers and checking amplitudes. Close chronocircuit und set pen to give contact the instant M_{2} pointer when moved clockwise from 0° to 91°, reaches 90°, or counter clockwise from 0° to 270°, reaches 270°.

Open chrono-circuit and proceed as in Method 1 , except that amplitudes are set up from 2. Tid. Pred. Check position of pen. (All pen checks should agree within 0.05 inch).

Set dial-pointers from 2 Tid. Pred., clamp, then check dial-pointers and height of pen.

Proceed as in Method 1.

Set date dial to read 28th Dec., close chrono. circuit, press cords adjoining M_{2} dial together for position of noon on chrono-sheet, mark name of port, date and time on sheet. Run on for 24 hours and press cords adjoining M_{3} dial for position of ?nd. noon, and repent until the noon position on successive days remains unchanged. Mark high and low-tide brenks with red and blue chalk. High-tide, falling pen, red-low-tidd rising pen, blue.

Mark noon position at end and beglnning of each sheet, and write date and name of port on ench sheet, check dinl-pointers nfter 360 dnys nt L.M.N. from 2 Tid. Pred., and run on machine for a day or во, then remove chrono-sheet.

IN RUNNING THE MACHINE

Method 3.
To obtain a Diurual Cbart for a Riverain Port.

As in Method 1.

As in Method 1, except that no Datum.line is required.

Proceed as in Method 1.

Proceed as in Method 1. The 16 amplitudes not used, should all be set to zero.

Proceed as in Method 1. The 16 dial-pointers not used, need not be set and should be left unclamped.

Proceed as in Method 1.

Proceed as in Method 1.
NOTE:-For n Diurnal chart the ${ }^{\text {y }}$-inch scale marked \boldsymbol{A} on the gear wheel is used.

Proceed as in Method 1.

Method 4.
To read Heights direct.

As in Method 1.

Fix the wooden scale for measuring on the pen-guide by propping up the lid of the latter on, say, another wooden ruler, before tying the ineasuring scale in position.

Proceed as in Method 1 for setting dialpointers aud checking amplitudes. Set pen by the wooden scale to give the value A_{0} from 1 Tid. Pred. (Distance between M.S.L. and datum for the particular port: this is also given in the Tide-tables nud in table XXI at the end of Chap. 1). The pen is not actually visible but a point on the back of the pen-box opposite it is mensured to.

Proceed as in Method 1.
In checking the pen height, subtract A_{0} from the height of the pen by the scale and multiply the result by the factor C (vide table rii). The value so obtained should agree with \mathbf{R}_{2} ou the Form 1 Tid. Pred, within 0.05 inch.

Proceed as in Method 1.

Proceed as in Method 1.

Set date dial to read 28th December. Run the machine, checking the lst. few height readings against those published in the previous years' T'ide-tnbles, recording from lat. January onwards in the form for the purpose. A reading has to be recorded by eye on an nverage every 7 seconds. At the end of a month it is advisable to stop the machine and oheck the differences of alternate tides, if any error is detected, it can be corrected by interpolation.
N.B. - This method is tiresome to the observer and in not recommended.

Check dial-pointers and helght of pen after 369 days nt L. M. N. from 1 Tid. Pred. Run on machine for n diny or 80 , recording the heighte as far as required.
65. Using a sharp hard pencil (4 H) and a good straight edge,

Roling up the diagram for height or height and time combined. rule lines 6 inches apart between the noon or midnight perforations.

The arrangement of perforations is as shown in the diagram facing page 16 Chapter III :-
On the small scale each arrow indicates a noon perforation on the diagram.

On the large scale the chain dotted arrows mark noon and the firm line arrows midnight.

In both cases the latter are the best ones to join up.
These lines have to be ruled in the case of diurnal charts for riverain ports, and in all cases where times have to be measured on the charts; but if the charts have been made solely for the purpose of measuring heights the chart should be dated at the proper perforations in order to facilitate entry of the heights according to date. It is not absolutely necessary to rule lines in this case, though sufficient care should have been taken in running the chart for the timings to be approximately correct. Though these times are not actually required for record, they serve as a rough check against those obtained from the chrono-sheet.

Diurnal Charts are run for all Riverain ports (except Bassein) on the small scale and these require the time lines ruled up.

Measuring the diagram times should not as a rule be measured from the small 3 -inch scale diagrams, run for height only, as times from these small diagrams are liable to be in error because the scale is only graduated to 30 minutes and can only be estimated to about 10 mins. These can be read, if required, by the metal scale marked A and M vide para 24 .
66. Times on the large or 6 -inch diagrams are measured from the midnight lines using the ivory edged scale vide para 23 , which are graduated to 6 minutes but which can be estimated with care to within 3 minutes.
67. After the times have been read and recorded on the appropriate form (4 to 8 Tid. Pred.) either from the 6 -inch height and time diagram as above, or from the chrono-sheet, the heights are read from the 3 or 6 -inch height diagram, using the correct scale for the port in question, vide para 26.
68. When both heights and times are read from the one diagram smoothing of the readings is not absolutely necessary, though this was usually carried out in England by grading the intervals, rising to
maximum and lowering to minimum. Corrections, if applied, should never exceed 5 minutes. The fact of the heights and times increasing and decreasing by graded intervals is of great assistance when reading proofs of tide-tables, as, by taking out alternate differences, errors can be easily detected.

The results of predicted times and heights for open sea ports have in the past been found to agree well with actuals, about 75 per cent of predictions being within 10 minutes in time and 90 per cent within 4 inches in height.
69. Using a sharp hard pencil (4 H), rule up the noon line and mark it 12 hours.
Ruling up chrono sheet.

With dividers obtain the 4th. part of one complete line on the sheet, which is about 22 inches long.
This represents 6 hours in time, step this off each way from the noon line at top and bottom of the sheet, and rule up marking the lines respectively 18 hours, 0 hours, 6 hours.

This can also be done on the chrono-sheet while it is on the drum by making use of the S_{2} dial pointer, the machine being moved by hand and stopped at every 30 degrees from the first noon or midnight line, and the recording pen of the chronograph made to rule the successive hour lines.
70. Note on the blank space on the left of the sheet:-(in red chalk) " Measure high-tides to left of break"; (in

Notes on the chrono sheet. blue chalk) "Measure low-tides to right of break": line up high-tides with red chalk and low-tides with blue chalk in continuation of those marked when running the machine.

Enter dates at intervals along the noon line and edges of the sheet. (N.B. The date changes as the line crosses the 0 hour or midnight line).

Roll over the chart and put the extremities of the lines together and mark any breaks which occur at or near this junction, as otherwise breaks may be incorrectly read, or even missed, at these points.
71. When the times of high and low-water are predicted by means of the chronograph sheet for certain ports which

Chrono sheet for ports with complex tides. have complex tides, it will be sometimes necessary to refer to the height chart corresponding, to interpret the chronograph sheet correctly, and to ascertain which is the lowest or highest point reached ly a tide, and in some cases which is the lowest of successive low-waters on the same day. The following ports in particular have such peculiarities :-
Suez
Aden
Perim
Port Albert Victor

Bhāvnagar
Kārwār
Porbandar
Tuticorin

Galle
Trincomalee
Colombo
Pāmban Pass

If such peculiar tides occur, mark those breaks on the chronosheet which are to be measured and those which are to be ignored after examination of the height chart.

If, as at Aden, there are occasions when there is no inferior high- nor low-water, there will be no break formed on the chronosheet at these times. The remark "No inferior high- nor low-water" should be written on the line on the chrono-sheet. In publishing the heights and times of such tides as these, when there is slack water, it is customary to print them in a special type and mark them with an asterisk to denote the peculiar nature of the tides.

If contact has failed at any time and there are no breaks where they should be, interpolate the markings by means of a pair of compasses, after comparison of the breaks before and after the missed contact, gradually increasing or reducing the interval as the case may demand. It is not advisable to interpolate too many missed intervals and it is better to rework the chart if too many contacts have been missed.
72. The high and low-waters should be read in the actual sequence in which they occur and commencing each day

Reading the Chronosbect. with the tide that immediately follows midnight, and not by the slipshod method of reading first all high-waters and then all low-waters, as mistakes in recording are apt to arise.

The times on the chrono-sheet can be read with ease to the nearest minute, and the result should be correct to within two minutes. The greatest probability of error is at neap tides.

To prevent mistakes in recording, the reader should call out the individual figures of the minutes e.g. the time 2 hours 50 minutes should be called out "two hours five nought". If he said "fifty" the recorder might put down "fifteen".

From the chrono-sheet for a port the times are read and entered up in their correct places on one or other of the forms 4 to 8 Tid Pred, selecting the one applicable to the port in question and the heights are afterwards entered in their proper places from the height chart.
73. The Diurnal charts for Riverain ports (which have been run with the 8 diurnal components $2 \mathrm{M}_{2} \mathrm{~K}_{1}, \mathrm{~J}, \mathrm{Q}, \mathrm{P}$,

Disposal of Diurnal charts. $\mathrm{M}_{2} \mathrm{~K}_{1}, \mathrm{~S}_{1}, \mathrm{~K}_{1}$ and O only), is atilised for correcting. the values of height and time obtained by direct computation for the semi-diurnal tide, so as to include the effect of the diurnal tide as explained in paras 129 to 132 , Chap. I. The diurnal charts are therefore passed to the Riverain computers after having been run on the machine, and ruled up and dated as explained in para 65.
74. In addition to the methods of using the tide-predicting machine already described, a new device has been originated by Dr. J. de Graaff Hunter, M.A., Sc. D., F. Inst. P., whereby the height

Prediction by multiple contact. of water at any time in tidal prediction can be electrically registered. This has already been referred to in para 5. A full description of the method is given below :-

The tide-predicting machine ordinarily traces a height-time curve on a roll of paper some 22 inches wide, by means of a pen carried by a wire which passes over and under the wheels of the 24 "components." The time scale generally employed was 6 inches $=24$ hours. It was found troublesome to the personnel available to read off times of high and low water from the curve with sufficient precision. There is naturally some vagueness as to the precise moment of maximum or minimum; but though this does not necessarily cause any serious flaw in the resulting tide-tables, it renders the ordinary system of checking proofs (and the measurements and copy from which they have resulted), by the method of reading the differences of times of alternate ligh-waters, much more troublesome. On this account it was at first thought desirable to rum off a second curve-the differential with regard to time of the height-time curve-whose ordinate vanishes at the time of high or low-water. This was soon made more convenient by dispensing with tracing the curve, and causing the pen to break an electric contact when crossing the zero-line, this event being recorded on a chronograph-drum actuated by the S_{1} component. It was then seen that a similar arrangement with multiple contacts corresponding to successive values of ordinate could conveniently be made to record the main character of the ordinary height-time curve. This arrangement indicates the times the predicted height of water reaches the varions selected heights, e.g. with a tide range of 15 fect, it may be conveniently arranged to show the times of the water reaching every whole foot of height above datum throughout the whole range. It was thought that this information
would be of greater value to mariners than the bare statement of height and time of high and low waters, with no information regarding water beights at intervening times.
75. The arrangement now to be described was made with this object in view. As will be seen from the diagram opposite, which shows part

Maltiple contact chart. of a chart for Bombay, the time of water reaching each foot is shown by a notch in the day line. The notches are upwards for ascending water, and downwards for descending water; while a level near to mean water level is indicated by a break in the line.

The diagram shows the Height of water at any time at Bombay, 1925; also Times and Heights of all High-Waters and Low-Waters. Local mean time (correction to Indian Standard Time $5 \frac{1}{2}$ hours E. of Greenwich is +39 minutes). Heights refer to datum of soundings on charts.

Explanation. Each horizontal line represents one day, and the date of every fifth line is given. The vertical lines represent hours from 0 to 24 (civil time).

The horizontal lines have notches which indicate the time at which the water is $1,2,3, \ldots \ldots$ feet above datum. When the notches are upwards \quad L_ the water is rising: when they are downwards the water is falling. There are gaps in the horizontal line when the water is $8 \cdot 5$ feet above datum (about mean-sea-level), accordingly the height of an upward notch to the right of a gap is 9 feet above datum and an upward notch to the left of the gap is δ feet above datum : while for downward notches the height of one to the right of the gap is 8 feet and of one to the left of the gap is 9 feet. The height indicated by any notch may be found by counting from the nearest gap $9,10,11 \ldots \ldots$ feet for rising water and $8,7,6 \ldots \ldots$.....eet for falling water. The process is illustrated in the bottom line of the chart for the day 31 Dec. 1924.

70. Examples.

(i) What is the height of water on January 26 at 3 hours 30 minutes?

Follow horizontal line for January 26 to meet vertical line for 3 hours. Here the notches are downward, indicating falling water and the height of the water at $3^{11} 30^{m}$ is between 9 and 10 feet: by estimation it is seen to be 9.8 feet.

(ii) When will the water height be 10 feet on February 10? Following line for February 10 there is seen to occurat 03 h .12 m . on falling tide
$\left.\begin{array}{llll}10 & 14 & \text { rising } & " \\ 14 & 22 & \text { falling } \\ 22 & 12 & \begin{array}{l}\text { rising }\end{array} \\ \hline, "\end{array}\right\}$ read off complete chart
(iii) What are the time and height of first high water on Jan. 30?

It will be noticed on the chart facing p. 30 that the heights of high and low waters are entered in figures to one decimal of a foot. The position of the decimal point indicates the time of the occurrence. The method of ascertaining these times and heights is described with reference to the diagram below and scale opposite.

First note the change of tide and bisect the distance (t_{3} or $2 t_{1}$) between the ticks on either side of the change and put a dot, which is the point sought.

Next, to calculate the height put the black zero line of the scale (sample opposite) vertically on the tick just to the left of the dot and trace along the curve from the next left tick and then along the horizontal line until it cuts the vertical line from the tick just to the right of the dot (vide diagram). From the position of this point between the lines of the rays, the decimal part of the height may be read off-lower figures for high water and upper figures for low waters. A reference to the scale opposite will make this clear.

The height is thus ascertained to be $13 \cdot 9$ feet as shown by the printed figure and measurement (or estimation by eye) of the position of the decimal point from the adjacent time line shows that this occurs at $03^{\mathrm{h}} 12^{\mathrm{m}}$.
77. The principle on which the scale for making these measurements is based is as follows* :-

If the tide be considered as a simple harmonic tide at phase angles θ_{1}, θ_{2} corresponding to times t_{1}, t_{2} reckoned from high-water, $2 r$ being the height of H. W. - height of L. W. and A the height of M.S.L. above datum $=\frac{1}{2}$ (height of H.W. + height of L. W.) :-vide figure below, in which r is the radius of the circle, and its centre A feet above datum.

Then the heights at times t_{1}, t_{2} are $\mathrm{A}+r \cos \theta_{1}, \mathrm{~A}+r \cos \theta_{2}$ respectively.

As these differ by 1 foot

$$
r\left(\cos \theta_{1}-\cos \theta_{2}\right)=1 \mathrm{ft} .
$$

Now the tide rises a further distance (say) $\cdot x$ ft. above the last complete foot to its maximum.

$$
\text { Therefore } r-r \cos \theta_{1}=\cdot x \mathrm{ft} .
$$

Now if $\cdot \boldsymbol{x}$ were as great as a whole foot we would have the relation

$$
\begin{aligned}
& 1-\cos \theta_{1}=\cos \rho_{1}-\cos \theta_{2} \\
& \text { or } 2 \cos \theta_{1}=1+\cos \theta_{2}
\end{aligned}
$$

[^19]whence by expanding
\[

$$
\begin{gathered}
2-\theta_{1}{ }^{2}=2-\frac{\theta_{2}{ }^{2}}{1 \cdot 2} \\
\text { whence } \frac{\theta_{2}}{\theta_{1}}=\frac{t_{2}}{t_{1}}=\sqrt{ } 2 \text { or roughly } \frac{7}{5} \\
\text { or } \frac{t_{2}-t_{1}}{2 t_{1}}=\frac{1}{5} \text {. }
\end{gathered}
$$
\]

Similarly the relations between $\frac{t_{2}-t_{1}}{2 t_{1}}$ may be found if x is $\cdot 9, \cdot 8, \cdot 7, \cdot 6, \ldots \ldots \ldots . .1 \mathrm{ft}$. and the angle of inclination of the lines representing $\cdot 9, \cdot 8, \cdot 7 \ldots \ldots \ldots . . \cdot \mathrm{l} \mathrm{ft}$ determined for purposes of constructing the scale.
78. The chief difficulties encountered in this method of chronograph

Difficalties in multiple contact system.
registration of multiple contacts were in making the contacts certain in action, while keeping friction forces very small, especially for those curves where the duration of contact was very small owing to rapid fall or rise of the curve. In this connection it may be noted that the wire which actuates the tide-curve pen is essentially of small diameter ($\cdot 005$ inch was generally used) and is 32 feet long. A small variation in tension of this wire extends it visibly, while if a thicker wire be used inaccuracy arises owing to this not being sufficiently flexible to fit close to all the wheels over which it passes. As regards duration of contact it is to be mentioned that the chrono-paper passes at the rate of about 23 mm . per second, and that a whole year's prediction is dealt with in about $2 \frac{1}{2}$ hours.
79. In the figure shown on page $34, \mathrm{AA}$ is a brass plate which is attached to the back of the pen of the tide machine,

> How contacts are arranged. with which it moves up and down when the machine is set in motion. BB is a bell-crank lever provided with a pivot b carried by the bracket C and the plate AA. The horizontal arm of $13 B$ carries two platinum points P_{1}, P_{2} near its left end and the vertical arm carries at its lower extremity the wheel W_{1}. There is a second wheel W_{2} whose pivots are carried by the plate AA and the bracket I). These two wheels W_{1}, W_{2} roll on the edges of a fixed brass strip SS, being maintained in contact by the pressure of a spring R.

The strip SS is shown in dotted lines, being in front of the plate AA and the horizontal arm B; it is of accurately uniform breadth, and is slotted at intervals of an inch for the pieces k, k. It is made of T -section to secure rigidity, and the pieces k, k are adjusted laterally by screws working in the vertical member of the T. The pieces k, k are
slightly pointed as shown, and can be made to project a small amount (actually about 0.3 mm .) beyond the right edge of the strip SS. As the plate AA is carried up and down with the pen, the wheel W_{1} rides over the points of the pieces k, k, and rocks the bell-crank lever, causing the platinum points P_{1}, P_{2} to move slightly $u p$ and down.

The part EE bears two platinum points $\mathbf{Q}_{1}, \boldsymbol{Q}_{2}$ in its upper and lower jaws, Q_{2} being adjustable in the direction of its length. This part has a pivot i with insulating bush, and is balanced by the counterweight m. Its motion is restricted by the insulators $\mathrm{I}_{1}, \mathrm{I}_{2}$ mounted excentrically on the two screws G_{1}, G_{2}. These screws are sufficiently tight-fitting to maintain their position, and by turning them to suitable positions the
rotation of EE is regulated as desired. EE is actuated by the friction of the fixed wire FF , which lies in a groove cut in EE and also bears on the two pallets H_{1}, H_{2}. These pallets are borne on arms which can be rotated, and by this means the drag of the wire on EE can be adjusted; this can also be done by modifying the tension of the wire FF. The wire FF is attached to the frame of the machine at the top of the pen slide by means of an insulator and passes through another insulator at the lower end of the slide, being kept in tension by an attached weight. It makes metallic contact with EE and forms a portion of the chronograph electric circuit.

It will be seen that when the plate AA is ascending the upper jaw is pressed against the insulator I_{1} by virtue of the drag of the wire FF, while when AA is descending the lower jaw of EE presses against I_{2}. The following events occur when AA is set in motion:
(1) AA ascending; E is pressed against I_{1}. Platinum points P_{1}, Q_{1} and P_{2}, Q_{2} are not in contact until wheel W_{1} rides over one of the projections k, k, when P_{2} makes contact with Q_{2}.
(2) AA descending; E is pressed towards I_{2}, but is held slightly away from it by the platinum point Q_{1} bearing on P_{1}. When W_{1} rides over one of the projections k, k, P_{1} separates from Q_{1} and \mathbf{E} presses on I_{2}.

The terminals of the chronograph pen circuit are joined to the strip SS and the wire FF respectively. It is obvious that the effect of W_{1} riding over a projection k is to make circuit in the case of AA rising; and to breult circuit in the case of AA falling. This is represented on the chart by __ $\boldsymbol{C}_{\text {___ and - respectively. A change of direction of }}$ motion of AA, which corresponds to high or low water, is indicated by - and - ; but owing to variation in tension, and hence in length, of wire, the actual time of this event is somewhat displaced. In order to provide a reference point, frequently repeated on the chronosheet, an additional electromagnet has been introduced, which lifts the chrono-pen from the paper when contact is established, making the indication - on the sheet. This is arranged for by the provision of a springy contact placed near mean water level, against which the wheel W_{1} presses in passing.

The chronograph is of the drum variety, and its shaft can be coupled to the square shanks of anyone of the 24 tidal components. Hitherto the component used has been \mathbf{S}_{1}, so that the lines of the chrono-sheet correspond to 24 hours.
80. It may be of interest to state that a "Research Fountain Pen*" has been used with excellent results for the chronograph. This is a very light pen and has a very steady and ready flow of

Research Fountain Pen. ink. Inking begins with very light pressure and there is no blotting or leaking. Ordinary fountain pen ink has been used; when photographic reproduction is intended a little lamp-black is mired with the ink.

* Supplied by Mr. A. Manro, 65 Preston Road, Winson Green, Birmingham.

INDEX

A

	B					
	Backlash weight, tide-gauge	II	19	8
Balance of gauge	II	43	22	
Band tide-gauge, displacement	\ldots	\ldots	II	35	18	
Barometer and thermometer, reading of	...	II	37	19		

C. $-($ Continued $)$.

D

Darwin, Prof. G. H.		Chap,	Para.	Page.
	...	I	9	4
" \quad " I	48	26
Data, for setting		III	39	15
", preparation of, for prediction		I	102	67
Datedial	...	III	15	6
" ${ }^{\prime}$...	III	43	16
" " III	60	21
Datum of soundings or plane of reference		I	29	12
Declination and parallax, entry of corrections		... I	128	105
Declinational tides I	36	16
Definitions 1	18-26	8-11
Description of Tidal machine	..	III	$6-17$	3-7
Determination of A's nnd B's	...	I	55	40
Diagram of components	...	III	29	12
Dial-pointers setting		III	58	21
," when there is an accidental stoppage		$\} \ldots \mathrm{III}$	63	23
Dials, setting of		... III	14	6
 III	42	16
Difficulties in multiple contact system		III	78	33
Dismantling gauge JI	44	22
Displacement of band II	35	18
Diurnal chart, disposal of		III	73	29
" ", , inequality	\cdots	I	28	12
" ", reading	...	I	129	105
" ", ,tides I	42	20
" " , "	50	28
Doodson, Prof. A. T.	$\begin{gathered} 9 \\ \text { foot-note } \end{gathered}$	4
 I	101	67
Drum, tide-gauge II	14	6
", ,", setting	-	... III	44	16
Duties of tidal clerk II	29	16

E

Eagre, (or Bore)		I	20	9
Ebb and flow	I	19	9
Electrical connections, chronograph	...	III	55	20
Electromotor driving Tidal machine		III	7	4
Eliminating effects of other tides		I	63	37
" ", " , periods	used in	I	5:3	38,39

F

> F.-(Continued).

	Criar.	Para.	Page
Fountain pen, " Research "	... III	80	36
Fourier's theorem	... I	10	5
Free wave in non-equatorial canals	... I	4	2
Friction rollers, tide-gauge	II	13	6
, , tidal	...	31	13

General description, tides	I	$32-45$	$14-24$
Gleufield and Kennedy, Basrah tide-gnuge	...	II	4	3	
Graduated staff	II	25	13

Half se	diurnal range, Div	...		I	131	106
Hansen	Tables de la Lune	\ldots		I	93	64
Harmo	Analysis	\ldots	...	I	7.10	3-5
	"	...		I	47	25
"	, disconti	...		I	101	67
"	, sample		\cdots	I	72	50
"	", , short-p		\cdots	I	52	34
"	curves	I	15	7
			...	I	47	25
	motion, simple	I	11	5
	tidal constituent	I	40	18
Height of water, how to find at any time				III	foot-note	
Heights, reading of			... III		67	16
Helmholtz tides			...	I	38	17
Hough, 8. 8.		I	6	2
Hours of visiting observatory				II	30110	16
Hunter, Dr. J. de Granff			... I			93
"	"	1II	5	3
				III	74	29

	I				
Indian Spring L. W. marls	\ldots	\ldots	I	29	13
Inequalities, Sun, moon, earth's motion	\ldots	I	35	15	
Ink for tide-predicting machine	\ldots	\ldots	..	III	22
Inspection, 'lidal observatories	\ldots	\ldots	II	40	20
Interpolation, height and time charts	\ldots	I	127	104	
Interruption in record	\ldots	\ldots	I	63	46
Interval moon's transit for reference of predictions.	I	112	95		
	\ldots	...	I	113	96

P.-(Continued).

R.-(Continued).

S.-(Continued).

	Chap.	Para.	Page.
Self-registering aneroids II	22	9
,, tide-gauges ...	III	2	1
Semi-diurnal tides	... I	42	20
" ", "	... I	50	28
Semi-range or amplitude	... I	12	6
-, "	... I	48	26
Setting amplitudes	... III	40	15
" "	... III	57	21
" and running tidal machine	III	33	14
," contact-wheel on pen-box to zero	... III	56	20
" date dial III	15	6
" " "	... III	43	16
" " "	... III	60	21
" data for	... III	39	15
" dials	... III	14	6
" "	... III	42	16
\ldots	... III	58	21
$" \quad " \text { in mid-year, when there is an }\}$... III	63	23
Setting drum	... III	44	16
" lower or datum line pen	.. III	37	14
", machine (general)	.. III	14	6
" moving pen to M.s.L.	... III	38	15
", to Standard Time	... III	43	16
" ", III	59	21
,, upper fixed pen to M.S.L.	... III	36	14
" up the machine, details of III	30	12
", verniers and scales	.. III	31	13
Shallow water constituents	... I	37	16
" " "	I	43	22
Short-period tides	I	34	15
"	I	50	29
" ", clearance for	I	57	41
Simple Harmonic motion ...	I	11	5
" " ", composition of	... I	14	7
Sine and cosine curve I	15	7
Site for a tide-gauge, selection of	... II	3	2
Smoothing of heights and times III	68	26
Solution of equations	... I	61	45
Special treatment $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~L}$ \& M_{1} tides	... I	50	29
Speed of tide I	12	6
	... I	48	27

S.-(Continued).

			Chap.	Para.	Page.
Spring rise	\ldots	\ldots	I	24	10
Stopping the machine	\ldots	\ldots	III	46	17
Stud-wheel, tide-giage	\ldots	\ldots	II	6	3
Synthetic methods of prediction	\ldots	\ldots	I	8	4
Syzygies	\ldots	\ldots	I	2	1

T

Table and Diagram of compo		... JII	29	11
Tables auxiliary I	...	110-140
" ", explamations	...	1	84-100	61-67
Thomson, Sir W. (Lord Kelvin)	...	I	7	4
" "	...	1	9	4
" " , I	17	8
" "	\cdots	III	1	1
Tidal constant	...	I	10	5
" " I	13	7
" constants $\mathrm{R}, \zeta, \mathrm{H}, \kappa$ I	49	27
" constituents I	33	15
 I	40-45	18-24
" friction I	31	13
" observations	...	II	1	1
" observatory	\ldots	.. I[24	13
" prediction data I	62	46
" " " \mathbf{I}	102-108	67-92
, research I	30	13
" terms I	18-26	8-11
, workers I	5	2
Tides I	18	8
", amplitude	...	I	48	26
" , argument	...	I	48	27
" , " I	50	29
", compound	...	I	10	5
" , " I	38	17
" , "	...	I	50	28
, , covering globe uniformly I	(2
", Declinatioual I	36	16
", Elliptic I	36	16
", epoch	...	I	48	27
, , Evectional	\cdot	.. I	36	16
" , general description	-,	... I	32	14

T.-(Continued).

'lides, generating force			Chap.	Para.	Page
	 I	1	1
"	, Helmholtz I	38	18
"	, $\mathrm{K}_{1}, \mathrm{~K}_{2} \mathrm{~L}$ \& M_{1}	...	I	50	29
"	, list of component I	51	30
"	, Long-period I	42	20
"	, Meteorological I	18	9
"	, ",		I	44	23
"	, Principal diurnal and semi-	i-diurnal	$\ldots \mathrm{I}$	42	21
"	, " " "		... I	50	30
"	, poles for measuring II	2	1
"	, semi-range I	48	26
"	, Shallow water I	43	22
"	, Short and Long-period I	34	15
"	, Short-period, analysis	. ${ }^{\circ}$... I	52	34
"	, speed	-	. I	48	27
"	, Variation	...	I	36	16
"	, " I	38	17
Tide-gauge		...	II	31	16
"	, backlash weight 1I	19	8
"	, band, displacement of II	35	18
"	, Basrah	\cdots	. 11	4	3
"	, chain and counterpoise	weight	... II	16	7
"	, chain-wheel II	12	6
"	, changing diagram II	33	17
"	, clock II	31	16
"	, ", stoppage of	\cdots	II	34	18
"	, connecting pipe	\cdots	II	4	2
"	, drum	...	II	14	6
"	, friction rollers	\cdots	.. II	13	6
"	, pencil, arrangementa for		... II	15	7
"	, ," holder II	17	7
"	, poles II	2	1
"	, L'rince's Dock 1I	5	3
"	, Newman's pattern II	6-20	3-8
"	, self-registering	-••	... II	2	1
"	, setting up and starting II	27	13
"	, site for II	3	2
"	, toothed-wheels	...	II	11	6
"	, trestle	-.•	... II	10	5

T.-(Continued).

Geod, Br, P.0.-1020-300,

[^0]: C. M. THOMPSON, Major, I.A., Calcutta: $\{$ 12th April 1926. $\}$

 Deputy Superintendent,
 Survey of India. Survey of India.

[^1]: *A still fuller development of the tide-generating potential has been made by Prof. A. T. Doodson, D. Sc. of the Tidal Institute of the University of Liverpool vide the proceedings of the Royal Society Vol. 100 of 1921, which inclndes fnrther constituents not incladed by Prof. Darwin in his schedules. This development includes all terms whose coefficients, relatively to the greatest coefficient, ore greater than $0 \cdot 00010$. This development is considered safficient to more than cover the needs of research work.

[^2]: * From 1925 onwards the times styled G. M. T. are reckoned from midnight, as in civil usage, so as to correspond with the civil date, instead of from noon, this change having been notified by the Nautical Almanac.

[^3]: Overtides.

[^4]: * The term synodic is applied to the tides dependent on the sun and moon being in conjunction.

[^5]: * See Sohedules [B, i], [B, ii], [B, iii] and C of Professor Darwin's Report.

[^6]: * Mr. Brookes of the National Physical Laboratory, Teddington, Eugland ased only 6 components viz:- $S_{1}, \mathrm{~K}_{1}, O, J, P, Q$, as these gave a less complex corve.

[^7]: NOTE:-The method of prediction for Riverain Ports is thus based on the assamption that the diurnal inequality is small. In the case of Basrali it is at times quite large. This may acconnt partially for the errors which occur in the predicted times at this port. The period of tidal observations at Basrah however has been too short for satisfactory resolts to be obtained, on which a definite opinion can be prononnced.

[^8]: Note:-The method of prediction for Riverain Ports is thus based on the assumption that the diurnal inequality is small. In the case of Basrah it is at times quite larke. This may account partially for the errors which occur in the predicted times at this port. The period of tidal observations at Basrah however has been too short for satisfactory resalts to be obtained, on which a definite opinion can be prononnced.

[^9]: * The factor for Monlmein - 0.2 is correct, as now given. The mistake in the valuo-1.2 given in G.T. Volume XVI p. 340 part I, was pointed out by Mr. Brookee of the National Physical laboratory.

[^10]: - The 24 honr systom has been alopted expressing these times, instead of the 12 bour system, s. m. or p.m.
 - Apparent time of moon's transit is entered in this column every 10th day commencing with lst Jannary.

[^11]: The velnes marked* are not actually worked oat bat interpolated, which saves the labour of entering the corrections for every day, alternate entries
 being suffici $\% \mathrm{t}$.

[^12]: * Formerly the valne λ_{0}. the clifference in height between datum of sonnding and mean sea level. was taken. and the difference between this and the height read from the monthly carve accepted as the divisor required.

[^13]: N.B.-In Table XIV. The middle of the yenr of olservations will occur at noon or midnight cocording as the 20th February is inclucled in the period of observations or not. If the midnight falle on a dete in a common year, or before the 20th Feliruary in a leap year, then the Decrement for N as given in the Table is correct: if, however, the midnight fills after the 20 th February in a leap year, then take the value as that given for the aucceeding date in the Table.

[^14]: * This yhenomennn, however, is not confined to cover, for at Madras and Bushire, both exposed positions, the diagrams are most iriegular.

[^15]: * The observatory at Port Blair is now closed.

[^16]: Breakage of chain or wire.

[^17]: Working zero.

[^18]: Selting the drum.

[^19]: * This principle is also applicable to finding the beight of water at any time when the fime of H. W. and L. W. is given, as, in this case,

 Height $=A+r \cos h$ or $\Lambda-r \cos h^{\prime}$

 $$
 \begin{aligned}
 \text { where } h & =180^{\circ} \times \frac{\text { Interval from H.W. }}{\text { Daration of rise or fall }} \\
 h^{\prime} & =180^{\circ} \times \frac{\text { Interval from L.W. }}{\text { Daration of rise or fall }}
 \end{aligned}
 $$

